IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v59y1995i1p81-104.html
   My bibliography  Save this article

The generalized covariation process and Ito formula

Author

Listed:
  • Russo, Francesco
  • Vallois, Pierre

Abstract

If X and Y are two general stochastic processess, we define a covariation process [X, Y] with the help of a limit procedure. When the processes are semimartingales, [X, Y] is their classical bracket. We calculate covariation for some important examples arising from anticipating stochastic calculus and we establish a Itô formula for f(X), where f is of class and X admits a generalized bracket [x, X].

Suggested Citation

  • Russo, Francesco & Vallois, Pierre, 1995. "The generalized covariation process and Ito formula," Stochastic Processes and their Applications, Elsevier, vol. 59(1), pages 81-104, September.
  • Handle: RePEc:eee:spapps:v:59:y:1995:i:1:p:81-104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/0304-4149(95)93237-A
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gozzi, Fausto & Russo, Francesco, 2006. "Weak Dirichlet processes with a stochastic control perspective," Stochastic Processes and their Applications, Elsevier, vol. 116(11), pages 1563-1583, November.
    2. Errami, Mohammed & Russo, Francesco, 2003. "n-covariation, generalized Dirichlet processes and calculus with respect to finite cubic variation processes," Stochastic Processes and their Applications, Elsevier, vol. 104(2), pages 259-299, April.
    3. Almada Monter, Sergio Angel, 2015. "Quadratic covariation estimates in non-smooth stochastic calculus," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 343-361.
    4. Čoupek, Petr & Duncan, Tyrone E. & Pasik-Duncan, Bozenna, 2022. "A stochastic calculus for Rosenblatt processes," Stochastic Processes and their Applications, Elsevier, vol. 150(C), pages 853-885.
    5. Bandini, Elena & Russo, Francesco, 2017. "Weak Dirichlet processes with jumps," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 4139-4189.
    6. Blandine, Bérard Bergery & Pierre, Vallois, 2008. "Approximation via regularization of the local time of semimartingales and Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2058-2070, November.
    7. Bouchard, Bruno & Loeper, Grégoire & Tan, Xiaolu, 2022. "A ℂ0,1-functional Itô’s formula and its applications in mathematical finance," Stochastic Processes and their Applications, Elsevier, vol. 148(C), pages 299-323.
    8. Bernt {O}ksendal & Elin R{o}se, 2015. "A white noise approach to insider trading," Papers 1508.06376, arXiv.org.
    9. Russo, Francesco & Vallois, Pierre, 1998. "Product of two multiple stochastic integrals with respect to a normal martingale," Stochastic Processes and their Applications, Elsevier, vol. 73(1), pages 47-68, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:59:y:1995:i:1:p:81-104. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.