IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v118y2008i3p333-345.html
   My bibliography  Save this article

Tail behavior of random products and stochastic exponentials

Author

Listed:
  • Cohen, Serge
  • Mikosch, Thomas

Abstract

In this paper we study the distributional tail behavior of the solution to a linear stochastic differential equation driven by infinite variance [alpha]-stable Lévy motion. We show that the solution is regularly varying with index [alpha]. An important step in the proof is the study of a Poisson number of products of independent random variables with regularly varying tail. The study of these products merits its own interest because it involves interesting saddle-point approximation techniques.

Suggested Citation

  • Cohen, Serge & Mikosch, Thomas, 2008. "Tail behavior of random products and stochastic exponentials," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 333-345, March.
  • Handle: RePEc:eee:spapps:v:118:y:2008:i:3:p:333-345
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00075-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hult, Henrik & Lindskog, Filip, 2005. "Extremal behavior of regularly varying stochastic processes," Stochastic Processes and their Applications, Elsevier, vol. 115(2), pages 249-274, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. R de Fondeville & A C Davison, 2018. "High-dimensional peaks-over-threshold inference," Biometrika, Biometrika Trust, vol. 105(3), pages 575-592.
    2. Cline, Daren B.H., 2007. "Regular variation of order 1 nonlinear AR-ARCH models," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 840-861, July.
    3. Yuen, Robert & Stoev, Stilian & Cooley, Daniel, 2020. "Distributionally robust inference for extreme Value-at-Risk," Insurance: Mathematics and Economics, Elsevier, vol. 92(C), pages 70-89.
    4. de Valk, Cees Fouad & Segers, Johan, 2018. "Stability and tail limits of transport-based quantile contours," LIDAM Discussion Papers ISBA 2018031, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    5. Raphaël de Fondeville & Anthony C. Davison, 2022. "Functional peaks‐over‐threshold analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(4), pages 1392-1422, September.
    6. Davis, Richard A. & Mikosch, Thomas, 2008. "Extreme value theory for space-time processes with heavy-tailed distributions," Stochastic Processes and their Applications, Elsevier, vol. 118(4), pages 560-584, April.
    7. Asma Teimouri & Mahbanoo Tata & Mohsen Rezapour & Rafal Kulik & Narayanaswamy Balakrishnan, 2021. "Asymptotic Behavior of Eigenvalues of Variance-Covariance Matrix of a High-Dimensional Heavy-Tailed Lévy Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1353-1375, December.
    8. Wu, Lifan & Samorodnitsky, Gennady, 2020. "Regularly varying random fields," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 4470-4492.
    9. Raluca M. Balan & Becem Saidani, 2020. "Stable Lévy Motion with Values in the Skorokhod Space: Construction and Approximation," Journal of Theoretical Probability, Springer, vol. 33(2), pages 1061-1110, June.
    10. Li, Zenghu & Ma, Chunhua, 2015. "Asymptotic properties of estimators in a stable Cox–Ingersoll–Ross model," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3196-3233.
    11. Bikramjit Das & Vicky Fasen-Hartmann, 2023. "Aggregating heavy-tailed random vectors: from finite sums to L\'evy processes," Papers 2301.10423, arXiv.org.
    12. Clémençon, Stephan & Huet, Nathan & Sabourin, Anne, 2024. "Regular variation in Hilbert spaces and principal component analysis for functional extremes," Stochastic Processes and their Applications, Elsevier, vol. 174(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:118:y:2008:i:3:p:333-345. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.