IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i7p3990-4027.html
   My bibliography  Save this article

Random walks in a strongly sparse random environment

Author

Listed:
  • Buraczewski, Dariusz
  • Dyszewski, Piotr
  • Iksanov, Alexander
  • Marynych, Alexander

Abstract

The integer points (sites) of the real line are marked by the positions of a standard random walk with positive integer jumps. We say that the set of marked sites is weakly, moderately or strongly sparse depending on whether the jumps of the random walk are supported by a bounded set, have finite or infinite mean, respectively. Focussing on the case of strong sparsity and assuming additionally that the distribution tail of the jumps is regularly varying at infinity we consider a nearest neighbor random walk on the set of integers having jumps ±1 with probability 1∕2 at every nonmarked site, whereas a random drift is imposed at every marked site. We prove new distributional limit theorems for the so defined random walk in a strongly sparse random environment, thereby complementing results obtained recently in Buraczewski et al. (2019) for the case of moderate sparsity and in Matzavinos et al. (2016) for the case of weak sparsity. While the random walk in a strongly sparse random environment exhibits either the diffusive scaling inherent to a simple symmetric random walk or a wide range of subdiffusive scalings, the corresponding limit distributions are non-stable.

Suggested Citation

  • Buraczewski, Dariusz & Dyszewski, Piotr & Iksanov, Alexander & Marynych, Alexander, 2020. "Random walks in a strongly sparse random environment," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 3990-4027.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:3990-4027
    DOI: 10.1016/j.spa.2019.11.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414919302224
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.11.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Straka, P. & Henry, B.I., 2011. "Lagging and leading coupled continuous time random walks, renewal times and their joint limits," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 324-336, February.
    2. Kesten, Harry, 1986. "The limit distribution of Sinai's random walk in random environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 138(1), pages 299-309.
    3. Resnick, Sidney & Greenwood, Priscilla, 1979. "A bivariate stable characterization and domains of attraction," Journal of Multivariate Analysis, Elsevier, vol. 9(2), pages 206-221, June.
    4. Bouchet, Élodie & Sabot, Christophe & dos Santos, Renato Soares, 2016. "A quenched functional central limit theorem for random walks in random environments under (T)γ," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1206-1225.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.
    2. Phillips, Peter C.B., 1995. "Robust Nonstationary Regression," Econometric Theory, Cambridge University Press, vol. 11(5), pages 912-951, October.
    3. Andreoletti, Pierre, 2006. "On the concentration of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1377-1408, October.
    4. Chan, Ngai Hang & Zhang, Rong-Mao, 2009. "Quantile inference for near-integrated autoregressive time series under infinite variance and strong dependence," Stochastic Processes and their Applications, Elsevier, vol. 119(12), pages 4124-4148, December.
    5. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    6. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    7. Andreoletti, Pierre, 2007. "Almost sure estimates for the concentration neighborhood of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1473-1490, October.
    8. Zhiyi Chi, 2018. "On a Multivariate Strong Renewal Theorem," Journal of Theoretical Probability, Springer, vol. 31(3), pages 1235-1272, September.
    9. Beghin, Luisa & Macci, Claudio & Ricciuti, Costantino, 2020. "Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6364-6387.
    10. Menshikov, M.V. & Wade, Andrew R., 2008. "Logarithmic speeds for one-dimensional perturbed random walks in random environments," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 389-416, March.
    11. Cavaliere, Giuseppe & Georgiev, Iliyan, 2013. "Exploiting Infinite Variance Through Dummy Variables In Nonstationary Autoregressions," Econometric Theory, Cambridge University Press, vol. 29(6), pages 1162-1195, December.
    12. Shi, Zhan, 1998. "A local time curiosity in random environment," Stochastic Processes and their Applications, Elsevier, vol. 76(2), pages 231-250, August.
    13. Jungjun Choi & In Choi, 2019. "Maximum likelihood estimation of autoregressive models with a near unit root and Cauchy errors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 71(5), pages 1121-1142, October.
    14. Diel, Roland, 2011. "Almost sure asymptotics for the local time of a diffusion in Brownian environment," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2303-2330, October.
    15. Vassili N. Kolokoltsov, 2023. "Fractional Equations for the Scaling Limits of Lévy Walks with Position-Dependent Jump Distributions," Mathematics, MDPI, vol. 11(11), pages 1-19, June.
    16. Kelbert, M. & Konakov, V. & Menozzi, S., 2016. "Weak error for Continuous Time Markov Chains related to fractional in time P(I)DEs," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1145-1183.
    17. Meerschaert, Mark M. & Scheffler, Hans-Peter, 1999. "Moment Estimator for Random Vectors with Heavy Tails," Journal of Multivariate Analysis, Elsevier, vol. 71(1), pages 145-159, October.
    18. Hu, Yueyun, 2000. "Tightness of localization and return time in random environment," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 81-101, March.
    19. Mazur, Stepan & Otryakhin, Dmitry & Podolskij, Mark, 2018. "Estimation of the linear fractional stable motion," Working Papers 2018:3, Örebro University, School of Business.
    20. Hasan, Mohammad N., 2001. "Rank tests of unit root hypothesis with infinite variance errors," Journal of Econometrics, Elsevier, vol. 104(1), pages 49-65, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:7:p:3990-4027. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.