IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v138y1986i1p299-309.html
   My bibliography  Save this article

The limit distribution of Sinai's random walk in random environment

Author

Listed:
  • Kesten, Harry

Abstract

Recently Sinai proved that if {Xn is a one-dimensional random walk in random environment which is recurrent, then (log n)-2Xn converges in distribution. Here we calculate the limit distribution explicitly.

Suggested Citation

  • Kesten, Harry, 1986. "The limit distribution of Sinai's random walk in random environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 138(1), pages 299-309.
  • Handle: RePEc:eee:phsmap:v:138:y:1986:i:1:p:299-309
    DOI: 10.1016/0378-4371(86)90186-X
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/037843718690186X
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/0378-4371(86)90186-X?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreoletti, Pierre, 2006. "On the concentration of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1377-1408, October.
    2. Shi, Zhan, 1998. "A local time curiosity in random environment," Stochastic Processes and their Applications, Elsevier, vol. 76(2), pages 231-250, August.
    3. Diel, Roland, 2011. "Almost sure asymptotics for the local time of a diffusion in Brownian environment," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2303-2330, October.
    4. Hu, Yueyun, 2000. "Tightness of localization and return time in random environment," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 81-101, March.
    5. Andreoletti, Pierre, 2007. "Almost sure estimates for the concentration neighborhood of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1473-1490, October.
    6. Buraczewski, Dariusz & Dyszewski, Piotr & Iksanov, Alexander & Marynych, Alexander, 2020. "Random walks in a strongly sparse random environment," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 3990-4027.
    7. Menshikov, M.V. & Wade, Andrew R., 2008. "Logarithmic speeds for one-dimensional perturbed random walks in random environments," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 389-416, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:138:y:1986:i:1:p:299-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.