On the concentration of Sinai's walk
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Hu, Yueyun, 2000. "Tightness of localization and return time in random environment," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 81-101, March.
- Kesten, Harry, 1986. "The limit distribution of Sinai's random walk in random environment," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 138(1), pages 299-309.
- Mathieu, Pierre, 1995. "Limit theorems for diffusions with a random potential," Stochastic Processes and their Applications, Elsevier, vol. 60(1), pages 103-111, November.
- Shi, Zhan, 1998. "A local time curiosity in random environment," Stochastic Processes and their Applications, Elsevier, vol. 76(2), pages 231-250, August.
- Gantert, Nina & Shi, Zhan, 2002. "Many visits to a single site by a transient random walk in random environment," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 159-176, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andreoletti, Pierre, 2007. "Almost sure estimates for the concentration neighborhood of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1473-1490, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hu, Yueyun, 2000. "Tightness of localization and return time in random environment," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 81-101, March.
- Grégoire Véchambre, 2023. "Almost Sure Behavior for the Local Time of a Diffusion in a Spectrally Negative Lévy Environment," Journal of Theoretical Probability, Springer, vol. 36(2), pages 876-925, June.
- Andreoletti, Pierre, 2007. "Almost sure estimates for the concentration neighborhood of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1473-1490, October.
- Diel, Roland, 2011. "Almost sure asymptotics for the local time of a diffusion in Brownian environment," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2303-2330, October.
- Zindy, Olivier, 2008. "Upper limits of Sinai's walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 981-1003, June.
- Mathieu, Pierre, 1998. "On random perturbations of dynamical systems and diffusions with a Brownian potential in dimension one," Stochastic Processes and their Applications, Elsevier, vol. 77(1), pages 53-67, September.
- Gutierrez-Pavón, Jonathan & Pacheco, Carlos G., 2022. "Quenched distributions for the maximum, minimum and local time of the Brox diffusion," Statistics & Probability Letters, Elsevier, vol. 180(C).
- Gutierrez-Pavón, Jonathan & Pacheco, Carlos G., 2020. "A density for the local time of the Brox diffusion," Statistics & Probability Letters, Elsevier, vol. 163(C).
- Menshikov, M.V. & Wade, Andrew R., 2008. "Logarithmic speeds for one-dimensional perturbed random walks in random environments," Stochastic Processes and their Applications, Elsevier, vol. 118(3), pages 389-416, March.
- Gantert, Nina & Shi, Zhan, 2002. "Many visits to a single site by a transient random walk in random environment," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 159-176, June.
- Cheliotis, Dimitris, 2008. "Localization of favorite points for diffusion in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 118(7), pages 1159-1189, July.
- Pierre Andreoletti & Roland Diel, 2011. "Limit Law of the Local Time for Brox’s Diffusion," Journal of Theoretical Probability, Springer, vol. 24(3), pages 634-656, September.
- Shi, Zhan, 1998. "A local time curiosity in random environment," Stochastic Processes and their Applications, Elsevier, vol. 76(2), pages 231-250, August.
- Buraczewski, Dariusz & Dyszewski, Piotr & Iksanov, Alexander & Marynych, Alexander, 2020. "Random walks in a strongly sparse random environment," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 3990-4027.
- Hu, Yaozhong & Lê, Khoa & Mytnik, Leonid, 2017. "Stochastic differential equation for Brox diffusion," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2281-2315.
- Carlos G. Pacheco & Mariana Pérez-Rojas, 2022. "Excursions of the Brox Diffusion," Journal of Theoretical Probability, Springer, vol. 35(3), pages 1479-1500, September.
More about this item
Keywords
Random environment Random walk Sinai's regime Markov chain Local time;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:10:p:1377-1408. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.