IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i11p2566-d1163245.html
   My bibliography  Save this article

Fractional Equations for the Scaling Limits of Lévy Walks with Position-Dependent Jump Distributions

Author

Listed:
  • Vassili N. Kolokoltsov

    (Faculty of Computation Mathematics and Cybernetics, Moscow State University, 119991 Moscow, Russia)

Abstract

Lévy walks represent important modeling tools for a variety of real-life processes. Their natural scaling limits are known to be described by the so-called material fractional derivatives. So far, these scaling limits have been derived for spatially homogeneous walks, where Fourier and Laplace transforms represent natural tools of analysis. Here, we derive the corresponding limiting equations in the case of position-depending times and velocities of walks, where Fourier transforms cannot be effectively applied. In fact, we derive three different limits (specified by the way the process is stopped at an attempt to cross the boundary), leading to three different multi-dimensional versions of Caputo–Dzherbashian derivatives, which correspond to different boundary conditions for the generators of the related Feller semigroups and processes. Some other extensions and generalizations are analyzed.

Suggested Citation

  • Vassili N. Kolokoltsov, 2023. "Fractional Equations for the Scaling Limits of Lévy Walks with Position-Dependent Jump Distributions," Mathematics, MDPI, vol. 11(11), pages 1-19, June.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2566-:d:1163245
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/11/2566/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/11/2566/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Straka, P. & Henry, B.I., 2011. "Lagging and leading coupled continuous time random walks, renewal times and their joint limits," Stochastic Processes and their Applications, Elsevier, vol. 121(2), pages 324-336, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kelbert, M. & Konakov, V. & Menozzi, S., 2016. "Weak error for Continuous Time Markov Chains related to fractional in time P(I)DEs," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1145-1183.
    2. Magdziarz, M. & Scheffler, H.P. & Straka, P. & Zebrowski, P., 2015. "Limit theorems and governing equations for Lévy walks," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4021-4038.
    3. Meerschaert, Mark M. & Nane, Erkan & Xiao, Yimin, 2013. "Fractal dimension results for continuous time random walks," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1083-1093.
    4. Scalas, Enrico & Viles, Noèlia, 2014. "A functional limit theorem for stochastic integrals driven by a time-changed symmetric α-stable Lévy process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 385-410.
    5. Beghin, Luisa & Macci, Claudio & Ricciuti, Costantino, 2020. "Random time-change with inverses of multivariate subordinators: Governing equations and fractional dynamics," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6364-6387.
    6. Peggy Cénac & Arnaud Ny & Basile Loynes & Yoann Offret, 2019. "Persistent Random Walks. II. Functional Scaling Limits," Journal of Theoretical Probability, Springer, vol. 32(2), pages 633-658, June.
    7. Buraczewski, Dariusz & Dyszewski, Piotr & Iksanov, Alexander & Marynych, Alexander, 2020. "Random walks in a strongly sparse random environment," Stochastic Processes and their Applications, Elsevier, vol. 130(7), pages 3990-4027.
    8. Busani, Ofer, 2017. "Finite dimensional Fokker–Planck equations for continuous time random walk limits," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1496-1516.
    9. Barczyk, A. & Kern, P., 2013. "Scaling limits of coupled continuous time random walks and residual order statistics through marked point processes," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 796-812.
    10. Straka, Peter, 2018. "Variable order fractional Fokker–Planck equations derived from Continuous Time Random Walks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 451-463.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:11:p:2566-:d:1163245. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.