IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i2p1119-1158.html
   My bibliography  Save this article

Maintenance of diversity in a hierarchical host–parasite model with balancing selection and reinfection

Author

Listed:
  • Pokalyuk, Cornelia
  • Wakolbinger, Anton

Abstract

Inspired by DNA data of the human cytomegalovirus we propose a model of a two-type parasite population distributed over its hosts. The parasite is capable to persist in its host till the host dies, and to reinfect other hosts. To maintain type diversity within a host, balancing selection is assumed.

Suggested Citation

  • Pokalyuk, Cornelia & Wakolbinger, Anton, 2020. "Maintenance of diversity in a hierarchical host–parasite model with balancing selection and reinfection," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 1119-1158.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:2:p:1119-1158
    DOI: 10.1016/j.spa.2019.04.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918301121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2019.04.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Champagnat, Nicolas, 2006. "A microscopic interpretation for adaptive dynamics trait substitution sequence models," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1127-1160, August.
    2. Pokalyuk, Cornelia & Pfaffelhuber, Peter, 2013. "The ancestral selection graph under strong directional selection," Theoretical Population Biology, Elsevier, vol. 87(C), pages 25-33.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    2. Manhart, Michael & Haldane, Allan & Morozov, Alexandre V., 2012. "A universal scaling law determines time reversibility and steady state of substitutions under selection," Theoretical Population Biology, Elsevier, vol. 82(1), pages 66-76.
    3. Cordero, Fernando, 2017. "Common ancestor type distribution: A Moran model and its deterministic limit," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 590-621.
    4. Fritsch, Coralie & Campillo, Fabien & Ovaskainen, Otso, 2017. "A numerical approach to determine mutant invasion fitness and evolutionary singular strategies," Theoretical Population Biology, Elsevier, vol. 115(C), pages 89-99.
    5. Bossert, S. & Pfaffelhuber, P., 2018. "The fixation probability and time for a doubly beneficial mutant," Stochastic Processes and their Applications, Elsevier, vol. 128(12), pages 4018-4050.
    6. González Casanova, Adrián & Kurt, Noemi & Wakolbinger, Anton & Yuan, Linglong, 2016. "An individual-based model for the Lenski experiment, and the deceleration of the relative fitness," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2211-2252.
    7. Khadraoui, Khader, 2015. "A simple Markovian individual-based model as a means of understanding forest dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 107(C), pages 1-23.
    8. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    9. Shidong Wang & Renaud Foucart & Cheng Wan, 2014. "Comeback kids: an evolutionary approach of the long-run innovation process," Papers 1411.2167, arXiv.org, revised Jul 2016.
    10. Lavallée, François & Smadi, Charline & Alvarez, Isabelle & Reineking, Björn & Martin, François-Marie & Dommanget, Fanny & Martin, Sophie, 2019. "A stochastic individual-based model for the growth of a stand of Japanese knotweed including mowing as a management technique," Ecological Modelling, Elsevier, vol. 413(C).
    11. González-Forero, Mauricio, 2024. "A mathematical framework for evo-devo dynamics," Theoretical Population Biology, Elsevier, vol. 155(C), pages 24-50.
    12. Sagitov, S. & Mehlig, B. & Jagers, P. & Vatutin, V., 2013. "Evolutionary branching in a stochastic population model with discrete mutational steps," Theoretical Population Biology, Elsevier, vol. 83(C), pages 145-154.
    13. Kluth, Sandra & Baake, Ellen, 2013. "The Moran model with selection: Fixation probabilities, ancestral lines, and an alternative particle representation," Theoretical Population Biology, Elsevier, vol. 90(C), pages 104-112.
    14. Blath, Jochen & Tóbiás, András, 2020. "Invasion and fixation of microbial dormancy traits under competitive pressure," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7363-7395.
    15. Lenz, Ute & Kluth, Sandra & Baake, Ellen & Wakolbinger, Anton, 2015. "Looking down in the ancestral selection graph: A probabilistic approach to the common ancestor type distribution," Theoretical Population Biology, Elsevier, vol. 103(C), pages 27-37.
    16. Billiard, Sylvain & Smadi, Charline, 2017. "The interplay of two mutations in a population of varying size: A stochastic eco-evolutionary model for clonal interference," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 701-748.
    17. Smadi, Charline, 2015. "An eco-evolutionary approach of adaptation and recombination in a large population of varying size," Stochastic Processes and their Applications, Elsevier, vol. 125(5), pages 2054-2095.
    18. Champagnat, Nicolas & Hass, Vincent, 2023. "Existence, uniqueness and ergodicity for the centered Fleming–Viot process," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    19. Blath, Jochen & Tóbiás, András, 2021. "The interplay of dormancy and transfer in bacterial populations: Invasion, fixation and coexistence regimes," Theoretical Population Biology, Elsevier, vol. 139(C), pages 18-49.
    20. Van Cleve, Jeremy & Lehmann, Laurent, 2013. "Stochastic stability and the evolution of coordination in spatially structured populations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 75-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:2:p:1119-1158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.