IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i12p7363-7395.html
   My bibliography  Save this article

Invasion and fixation of microbial dormancy traits under competitive pressure

Author

Listed:
  • Blath, Jochen
  • Tóbiás, András

Abstract

Microbial dormancy is an evolutionary trait that has emerged independently at various positions across the tree of life. It describes the ability of a microorganism to switch to a metabolically inactive state that can withstand unfavourable conditions. However, maintaining such a trait requires additional resources that could otherwise be used to increase e.g. reproductive rates. In this paper, we aim for gaining a basic understanding under which conditions maintaining a seed bank of dormant individuals provides a “fitness advantage” when facing resource limitations and competition for resources among individuals (in an otherwise stable environment). In particular, we wish to understand when an individual with a “dormancy trait” can invade a resident population lacking this trait despite having a lower reproduction rate than the residents. To this end, we follow a stochastic individual-based approach employing birth-and-death processes, where dormancy is triggered by competitive pressure for resources. In the large-population limit, we identify a necessary and sufficient condition under which a complete invasion of mutants has a positive probability. Further, we explicitly determine the limiting probability of invasion and the asymptotic time to fixation of mutants in the case of a successful invasion. In the proofs, we observe the three classical phases of invasion dynamics in the guise of Coron et al. (2017, 2019).

Suggested Citation

  • Blath, Jochen & Tóbiás, András, 2020. "Invasion and fixation of microbial dormancy traits under competitive pressure," Stochastic Processes and their Applications, Elsevier, vol. 130(12), pages 7363-7395.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:12:p:7363-7395
    DOI: 10.1016/j.spa.2020.07.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920303409
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.07.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Champagnat, Nicolas, 2006. "A microscopic interpretation for adaptive dynamics trait substitution sequence models," Stochastic Processes and their Applications, Elsevier, vol. 116(8), pages 1127-1160, August.
    2. Koopmann, Bendix & Müller, Johannes & Tellier, Aurélien & Živković, Daniel, 2017. "Fisher–Wright model with deterministic seed bank and selection," Theoretical Population Biology, Elsevier, vol. 114(C), pages 29-39.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Blath, Jochen & Tóbiás, András, 2021. "The interplay of dormancy and transfer in bacterial populations: Invasion, fixation and coexistence regimes," Theoretical Population Biology, Elsevier, vol. 139(C), pages 18-49.
    2. Usman Sanusi & Sona John & Johannes Mueller & Aurélien Tellier, 2022. "Quiescence Generates Moving Average in a Stochastic Epidemiological Model with One Host and Two Parasites," Mathematics, MDPI, vol. 10(13), pages 1-22, June.
    3. Blath, Jochen & Paul, Tobias & Tóbiás, András & Wilke Berenguer, Maite, 2024. "The impact of dormancy on evolutionary branching," Theoretical Population Biology, Elsevier, vol. 156(C), pages 66-76.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Åke Brännström & Jacob Johansson & Niels Von Festenberg, 2013. "The Hitchhiker’s Guide to Adaptive Dynamics," Games, MDPI, vol. 4(3), pages 1-25, June.
    2. Manhart, Michael & Haldane, Allan & Morozov, Alexandre V., 2012. "A universal scaling law determines time reversibility and steady state of substitutions under selection," Theoretical Population Biology, Elsevier, vol. 82(1), pages 66-76.
    3. Usman Sanusi & Sona John & Johannes Mueller & Aurélien Tellier, 2022. "Quiescence Generates Moving Average in a Stochastic Epidemiological Model with One Host and Two Parasites," Mathematics, MDPI, vol. 10(13), pages 1-22, June.
    4. Jain, Kavita & Kaushik, Sachin, 2022. "Joint effect of changing selection and demography on the site frequency spectrum," Theoretical Population Biology, Elsevier, vol. 146(C), pages 46-60.
    5. Blath, Jochen & Buzzoni, Eugenio & Koskela, Jere & Wilke Berenguer, Maite, 2020. "Statistical tools for seed bank detection," Theoretical Population Biology, Elsevier, vol. 132(C), pages 1-15.
    6. González Casanova, Adrián & Kurt, Noemi & Wakolbinger, Anton & Yuan, Linglong, 2016. "An individual-based model for the Lenski experiment, and the deceleration of the relative fitness," Stochastic Processes and their Applications, Elsevier, vol. 126(8), pages 2211-2252.
    7. González-Forero, Mauricio, 2024. "A mathematical framework for evo-devo dynamics," Theoretical Population Biology, Elsevier, vol. 155(C), pages 24-50.
    8. Smadi, Charline, 2015. "An eco-evolutionary approach of adaptation and recombination in a large population of varying size," Stochastic Processes and their Applications, Elsevier, vol. 125(5), pages 2054-2095.
    9. Pokalyuk, Cornelia & Wakolbinger, Anton, 2020. "Maintenance of diversity in a hierarchical host–parasite model with balancing selection and reinfection," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 1119-1158.
    10. Champagnat, Nicolas & Hass, Vincent, 2023. "Existence, uniqueness and ergodicity for the centered Fleming–Viot process," Stochastic Processes and their Applications, Elsevier, vol. 166(C).
    11. Fritsch, Coralie & Campillo, Fabien & Ovaskainen, Otso, 2017. "A numerical approach to determine mutant invasion fitness and evolutionary singular strategies," Theoretical Population Biology, Elsevier, vol. 115(C), pages 89-99.
    12. Heinrich, Lukas & Müller, Johannes & Tellier, Aurélien & Živković, Daniel, 2018. "Effects of population- and seed bank size fluctuations on neutral evolution and efficacy of natural selection," Theoretical Population Biology, Elsevier, vol. 123(C), pages 45-69.
    13. Khadraoui, Khader, 2015. "A simple Markovian individual-based model as a means of understanding forest dynamics," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 107(C), pages 1-23.
    14. Van Cleve, Jeremy, 2015. "Social evolution and genetic interactions in the short and long term," Theoretical Population Biology, Elsevier, vol. 103(C), pages 2-26.
    15. Shidong Wang & Renaud Foucart & Cheng Wan, 2014. "Comeback kids: an evolutionary approach of the long-run innovation process," Papers 1411.2167, arXiv.org, revised Jul 2016.
    16. Lavallée, François & Smadi, Charline & Alvarez, Isabelle & Reineking, Björn & Martin, François-Marie & Dommanget, Fanny & Martin, Sophie, 2019. "A stochastic individual-based model for the growth of a stand of Japanese knotweed including mowing as a management technique," Ecological Modelling, Elsevier, vol. 413(C).
    17. Sagitov, S. & Mehlig, B. & Jagers, P. & Vatutin, V., 2013. "Evolutionary branching in a stochastic population model with discrete mutational steps," Theoretical Population Biology, Elsevier, vol. 83(C), pages 145-154.
    18. Billiard, Sylvain & Smadi, Charline, 2017. "The interplay of two mutations in a population of varying size: A stochastic eco-evolutionary model for clonal interference," Stochastic Processes and their Applications, Elsevier, vol. 127(3), pages 701-748.
    19. Blath, Jochen & Tóbiás, András, 2021. "The interplay of dormancy and transfer in bacterial populations: Invasion, fixation and coexistence regimes," Theoretical Population Biology, Elsevier, vol. 139(C), pages 18-49.
    20. Van Cleve, Jeremy & Lehmann, Laurent, 2013. "Stochastic stability and the evolution of coordination in spatially structured populations," Theoretical Population Biology, Elsevier, vol. 89(C), pages 75-87.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:12:p:7363-7395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.