IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v130y2020i10p6300-6318.html
   My bibliography  Save this article

Pricing of American lookback spread options

Author

Listed:
  • Woo, Min Hyeok
  • Choe, Geon Ho

Abstract

We find the closed form formula for the price of the perpetual American lookback spread option, whose payoff is the difference of the running maximum and minimum prices of a single asset. We solve an optimal stopping problem related to both maximum and minimum. We show that the spread option is equivalent to some fixed strike options on some domains, find the exact form of the optimal stopping region, and obtain the solution of the resulting partial differential equations. The value function is not differentiable. However, we prove the verification theorem due to the monotonicity of the maximum and minimum processes.

Suggested Citation

  • Woo, Min Hyeok & Choe, Geon Ho, 2020. "Pricing of American lookback spread options," Stochastic Processes and their Applications, Elsevier, vol. 130(10), pages 6300-6318.
  • Handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:6300-6318
    DOI: 10.1016/j.spa.2020.05.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414920302842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2020.05.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conze, Antoine & Viswanathan, 1991. "Path Dependent Options: The Case of Lookback Options," Journal of Finance, American Finance Association, vol. 46(5), pages 1893-1907, December.
    2. Peter Buchen & Otto Konstandatos, 2005. "A New Method Of Pricing Lookback Options," Mathematical Finance, Wiley Blackwell, vol. 15(2), pages 245-259, April.
    3. Goran Peskir, 2005. "The Russian option: Finite horizon," Finance and Stochastics, Springer, vol. 9(2), pages 251-267, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenya Liu & Yuhao Mu, 2022. "Optimal Stopping Methods for Investment Decisions: A Literature Review," IJFS, MDPI, vol. 10(4), pages 1-23, October.
    2. Deng, Guohe, 2020. "Pricing perpetual American floating strike lookback option under multiscale stochastic volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    3. Tsvetelin S. Zaevski, 2024. "Quadratic American Strangle Options in Light of Two-Sided Optimal Stopping Problems," Mathematics, MDPI, vol. 12(10), pages 1-27, May.
    4. Zaevski, Tsvetelin S., 2022. "Pricing discounted American capped options," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun-Yong Choi & Ji-Hun Yoon & Junkee Jeon, 2019. "Pricing of Fixed-Strike Lookback Options on Assets with Default Risk," Mathematical Problems in Engineering, Hindawi, vol. 2019, pages 1-10, January.
    2. Lee, Hangsuck & Ha, Hongjun & Lee, Minha, 2023. "Partial quanto lookback options," The North American Journal of Economics and Finance, Elsevier, vol. 64(C).
    3. Peter Buchen & Hamish Malloch, 2014. "CLA's, PLA's and a new method for pricing general passport options," Quantitative Finance, Taylor & Francis Journals, vol. 14(7), pages 1201-1209, July.
    4. Lee, Hangsuck & Ha, Hongjun & Kim, Eunchae & Lee, Minha, 2024. "Quanto fund protection using partial lookback participation," The North American Journal of Economics and Finance, Elsevier, vol. 73(C).
    5. Kim, Geonwoo & Jeon, Junkee, 2018. "Closed-form solutions for valuing partial lookback options with random initiation," Finance Research Letters, Elsevier, vol. 24(C), pages 321-327.
    6. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    7. Hans-Peter Bermin & Peter Buchen & Otto Konstandatos, 2008. "Two Exotic Lookback Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(4), pages 387-402.
    8. Gapeev, Pavel V., 2006. "Discounted optimal stopping for maxima of some jump-diffusion processes," SFB 649 Discussion Papers 2006-059, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    9. Lee, Hangsuck & Kim, Eunchae & Ko, Bangwon, 2022. "Valuing lookback options with barrier," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    10. Bjork, Tomas, 2009. "Arbitrage Theory in Continuous Time," OUP Catalogue, Oxford University Press, edition 3, number 9780199574742.
    11. de Angelis, Tiziano & Ferrari, Giorgio, 2014. "A Stochastic Reversible Investment Problem on a Finite-Time Horizon: Free Boundary Analysis," Center for Mathematical Economics Working Papers 477, Center for Mathematical Economics, Bielefeld University.
    12. Yang, Zhaoqiang, 2020. "Default probability of American lookback option in a mixed jump-diffusion model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 540(C).
    13. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    14. Kimura, Toshikazu, 2008. "Valuing finite-lived Russian options," European Journal of Operational Research, Elsevier, vol. 189(2), pages 363-374, September.
    15. Hans-Peter Bermin, 2000. "Hedging lookback and partial lookback options using Malliavin calculus," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(2), pages 75-100.
    16. Peter Buchen & Otto Konstandatos, 2009. "A New Approach to Pricing Double-Barrier Options with Arbitrary Payoffs and Exponential Boundaries," Applied Mathematical Finance, Taylor & Francis Journals, vol. 16(6), pages 497-515.
    17. Cao, Jiling & Kim, Jeong-Hoon & Li, Xi & Zhang, Wenjun, 2023. "Valuation of barrier and lookback options under hybrid CEV and stochastic volatility," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 660-676.
    18. Konstandatos, Otto, 2020. "Fair-value analytical valuation of reset executive stock options consistent with IFRS9 requirements," Annals of Actuarial Science, Cambridge University Press, vol. 14(1), pages 188-218, March.
    19. Yerkin Kitapbayev, 2015. "The British Lookback Option with Fixed Strike," Applied Mathematical Finance, Taylor & Francis Journals, vol. 22(3), pages 238-260, July.
    20. repec:dau:papers:123456789/5374 is not listed on IDEAS
    21. Ling Lu & Wei Xu & Zhehui Qian, 2017. "Efficient willow tree method for European-style and American-style moving average barrier options pricing," Quantitative Finance, Taylor & Francis Journals, vol. 17(6), pages 889-906, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:130:y:2020:i:10:p:6300-6318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.