IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v129y2019i12p4965-4997.html
   My bibliography  Save this article

Topological crackle of heavy-tailed moving average processes

Author

Listed:
  • Owada, Takashi

Abstract

The main focus of this paper is topological crackle, the layered structure of annuli formed by heavy-tailed random points in Rd. In view of extreme value theory, we study the topological crackle generated by a heavy-tailed discrete-time moving average process. Because of the clustering effect of a moving average process, various topological cycles are produced consecutively in time in the layers of the crackle. We establish the limit theorems for the Betti numbers, a basic quantifier of topological cycles. The Betti number converges to the sum of stochastic integrals, some of which induce multiple cycles because of the clustering effect.

Suggested Citation

  • Owada, Takashi, 2019. "Topological crackle of heavy-tailed moving average processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 4965-4997.
  • Handle: RePEc:eee:spapps:v:129:y:2019:i:12:p:4965-4997
    DOI: 10.1016/j.spa.2018.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414918307567
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2018.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Schulte, Matthias & Thäle, Christoph, 2012. "The scaling limit of Poisson-driven order statistics with applications in geometric probability," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 4096-4120.
    2. Balkema, A.A. & Embrechts, P. & Nolde, N., 2010. "Meta densities and the shape of their sample clouds," Journal of Multivariate Analysis, Elsevier, vol. 101(7), pages 1738-1754, August.
    3. Mark M. Meerschaert & Hans‐Peter Scheffler, 2000. "Moving Averages of Random Vectors with Regularly Varying Tails," Journal of Time Series Analysis, Wiley Blackwell, vol. 21(3), pages 297-328, May.
    4. Basrak, Bojan & Davis, Richard A. & Mikosch, Thomas, 2002. "Regular variation of GARCH processes," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 95-115, May.
    5. Dabrowski, André R. & Dehling, Herold G. & Mikosch, Thomas & Sharipov, Olimjon, 2002. "Poisson limits for U-statistics," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 137-157, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bonnet, Gilles & Hirsch, Christian & Rosen, Daniel & Willhalm, Daniel, 2023. "Limit theory of sparse random geometric graphs in high dimensions," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 203-236.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fasen, Vicky, 2013. "Statistical estimation of multivariate Ornstein–Uhlenbeck processes and applications to co-integration," Journal of Econometrics, Elsevier, vol. 172(2), pages 325-337.
    2. Mika Meitz & Pentti Saikkonen, 2008. "Stability of nonlinear AR‐GARCH models," Journal of Time Series Analysis, Wiley Blackwell, vol. 29(3), pages 453-475, May.
    3. Ding, Jing & Jiang, Lei & Liu, Xiaohui & Peng, Liang, 2023. "Nonparametric tests for market timing ability using daily mutual fund returns," Journal of Economic Dynamics and Control, Elsevier, vol. 150(C).
    4. Chen, Zhimin & Ibragimov, Rustam, 2019. "One country, two systems? The heavy-tailedness of Chinese A- and H- share markets," Emerging Markets Review, Elsevier, vol. 38(C), pages 115-141.
    5. Wolf-Dieter Richter, 2019. "On (p1,…,pk)-spherical distributions," Journal of Statistical Distributions and Applications, Springer, vol. 6(1), pages 1-18, December.
    6. Francq, Christian & Zakoian, Jean-Michel, 2024. "Finite moments testing in a general class of nonlinear time series models," MPRA Paper 121193, University Library of Munich, Germany.
    7. Drees, Holger & Janßen, Anja & Neblung, Sebastian, 2021. "Cluster based inference for extremes of time series," Stochastic Processes and their Applications, Elsevier, vol. 142(C), pages 1-33.
    8. Cline, Daren B.H., 2007. "Regular variation of order 1 nonlinear AR-ARCH models," Stochastic Processes and their Applications, Elsevier, vol. 117(7), pages 840-861, July.
    9. Eckhard Liebscher & Wolf-Dieter Richter, 2016. "Estimation of Star-Shaped Distributions," Risks, MDPI, vol. 4(4), pages 1-37, November.
    10. Aknouche, Abdelhakim & Demmouche, Nacer & Touche, Nassim, 2018. "Bayesian MCMC analysis of periodic asymmetric power GARCH models," MPRA Paper 91136, University Library of Munich, Germany.
    11. Phornchanok Cumperayot & Casper G. de Vries, 2006. "Large Swings in Currencies driven by Fundamentals," Tinbergen Institute Discussion Papers 06-086/2, Tinbergen Institute.
    12. Chandra, S. Ajay, 2009. "Testing the equality of error distributions from k independent GARCH models," Journal of Multivariate Analysis, Elsevier, vol. 100(6), pages 1245-1260, July.
    13. Sabiou Inoua, 2016. "The Random Walk behind Volatility Clustering," Papers 1612.09344, arXiv.org.
    14. Bee, Marco & Dupuis, Debbie J. & Trapin, Luca, 2016. "Realizing the extremes: Estimation of tail-risk measures from a high-frequency perspective," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 86-99.
    15. Qing Yang & Yu-Ning Li & Yi Zhang, 2020. "Change point detection for nonparametric regression under strongly mixing process," Statistical Papers, Springer, vol. 61(4), pages 1465-1506, August.
    16. Zhu, Ke & Ling, Shiqing, 2013. "Global self-weighted and local quasi-maximum exponential likelihood estimators for ARMA-GARCH/IGARCH models," MPRA Paper 51509, University Library of Munich, Germany.
    17. Janßen, Anja, 2019. "Spectral tail processes and max-stable approximations of multivariate regularly varying time series," Stochastic Processes and their Applications, Elsevier, vol. 129(6), pages 1993-2009.
    18. Oliver Kley & Claudia Kluppelberg, 2015. "Bounds for randomly shared risk of heavy-tailed loss factors," Papers 1503.03726, arXiv.org, revised Apr 2016.
    19. Oliver Kley & Claudia Kluppelberg & Gesine Reinert, 2014. "Risk in a large claims insurance market with bipartite graph structure," Papers 1410.8671, arXiv.org, revised Nov 2015.
    20. Hill, Jonathan B. & Prokhorov, Artem, 2016. "GEL estimation for heavy-tailed GARCH models with robust empirical likelihood inference," Journal of Econometrics, Elsevier, vol. 190(1), pages 18-45.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:12:p:4965-4997. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.