IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i12p4096-4120.html
   My bibliography  Save this article

The scaling limit of Poisson-driven order statistics with applications in geometric probability

Author

Listed:
  • Schulte, Matthias
  • Thäle, Christoph

Abstract

Let ηt be a Poisson point process of intensity t≥1 on some state space Y and let f be a non-negative symmetric function on Yk for some k≥1. Applying f to all k-tuples of distinct points of ηt generates a point process ξt on the positive real half-axis. The scaling limit of ξt as t tends to infinity is shown to be a Poisson point process with explicitly known intensity measure. From this, a limit theorem for the m-th smallest point of ξt is concluded. This is strengthened by providing a rate of convergence. The technical background includes Wiener–Itô chaos decompositions and the Malliavin calculus of variations on the Poisson space as well as the Chen–Stein method for Poisson approximation. The general result is accompanied by a number of examples from geometric probability and stochastic geometry, such as k-flats, random polytopes, random geometric graphs and random simplices. They are obtained by combining the general limit theorem with tools from convex and integral geometry.

Suggested Citation

  • Schulte, Matthias & Thäle, Christoph, 2012. "The scaling limit of Poisson-driven order statistics with applications in geometric probability," Stochastic Processes and their Applications, Elsevier, vol. 122(12), pages 4096-4120.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:4096-4120
    DOI: 10.1016/j.spa.2012.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414912001883
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2012.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Janson, Svante, 1987. "Poisson convergence and poisson processes with applications to random graphs," Stochastic Processes and their Applications, Elsevier, vol. 26, pages 1-30.
    2. Barbour, A. D. & Brown, T. C., 1992. "Stein's method and point process approximation," Stochastic Processes and their Applications, Elsevier, vol. 43(1), pages 9-31, November.
    3. Henze, Norbert & Klein, Timo, 1996. "The Limit Distribution of the Largest Interpoint Distance from a Symmetric Kotz Sample," Journal of Multivariate Analysis, Elsevier, vol. 57(2), pages 228-239, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lachièze-Rey, Raphaël & Peccati, Giovanni, 2013. "Fine Gaussian fluctuations on the Poisson space II: Rescaled kernels, marked processes and geometric U-statistics," Stochastic Processes and their Applications, Elsevier, vol. 123(12), pages 4186-4218.
    2. Matthias Schulte & Christoph Thäle, 2014. "Distances Between Poisson k -Flats," Methodology and Computing in Applied Probability, Springer, vol. 16(2), pages 311-329, June.
    3. Owada, Takashi, 2019. "Topological crackle of heavy-tailed moving average processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 4965-4997.
    4. Chenavier, Nicolas, 2014. "A general study of extremes of stationary tessellations with examples," Stochastic Processes and their Applications, Elsevier, vol. 124(9), pages 2917-2953.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M. J. Appel & R. P. Russo, 2006. "Limiting Distributions for the Maximum of a Symmetric Function on a Random Point Set," Journal of Theoretical Probability, Springer, vol. 19(2), pages 365-375, June.
    2. Tang, Ping & Lu, Rongrong & Xie, Junshan, 2022. "Asymptotic distribution of the maximum interpoint distance for high-dimensional data," Statistics & Probability Letters, Elsevier, vol. 190(C).
    3. Oleg Seleznjev & Bernhard Thalheim, 2003. "Average Case Analysis in Database Problems," Methodology and Computing in Applied Probability, Springer, vol. 5(4), pages 395-418, December.
    4. He, Shengwu & Xia, Aihua, 1997. "On poisson approximation to the partial sum process of a Markov chain," Stochastic Processes and their Applications, Elsevier, vol. 68(1), pages 101-111, May.
    5. Schuhmacher, Dominic, 2005. "Distance estimates for dependent superpositions of point processes," Stochastic Processes and their Applications, Elsevier, vol. 115(11), pages 1819-1837, November.
    6. Gan, H.L. & Xia, A., 2015. "Stein’s method for conditional compound Poisson approximation," Statistics & Probability Letters, Elsevier, vol. 100(C), pages 19-26.
    7. Brown, Timothy C. & Weinberg, Graham V. & Xia, Aihua, 2000. "Removing logarithms from Poisson process error bounds," Stochastic Processes and their Applications, Elsevier, vol. 87(1), pages 149-165, May.
    8. Brown, Timothy C. & Xia, Aihua, 1995. "On Stein-Chen factors for Poisson approximation," Statistics & Probability Letters, Elsevier, vol. 23(4), pages 327-332, June.
    9. Phelan, Michael J., 1997. "Approach to stationarity for birth and death on flows," Stochastic Processes and their Applications, Elsevier, vol. 66(2), pages 183-207, March.
    10. Lao, W. & Mayer, M., 2008. "U-max-statistics," Journal of Multivariate Analysis, Elsevier, vol. 99(9), pages 2039-2052, October.
    11. Xia, Aihua & Zhang, Fuxi, 2008. "A polynomial birth-death point process approximation to the Bernoulli process," Stochastic Processes and their Applications, Elsevier, vol. 118(7), pages 1254-1263, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:12:p:4096-4120. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.