Almost sure convergence of the largest and smallest eigenvalues of high-dimensional sample correlation matrices
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2017.10.002
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Davis, Richard A. & Pfaffel, Oliver & Stelzer, Robert, 2014. "Limit theory for the largest eigenvalues of sample covariance matrices with heavy-tails," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 18-50.
- Davis, Richard A. & Mikosch, Thomas & Pfaffel, Oliver, 2016. "Asymptotic theory for the sample covariance matrix of a heavy-tailed multivariate time series," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 767-799.
- Jonsson, Fredrik, 2010. "On the quadratic moment of self-normalized sums," Statistics & Probability Letters, Elsevier, vol. 80(17-18), pages 1289-1296, September.
- Banna, Marwa & Merlevède, Florence & Peligrad, Magda, 2015. "On the limiting spectral distribution for a large class of symmetric random matrices with correlated entries," Stochastic Processes and their Applications, Elsevier, vol. 125(7), pages 2700-2726.
- Bai, Z. D. & Silverstein, Jack W. & Yin, Y. Q., 1988. "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 26(2), pages 166-168, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Heiny, Johannes & Mikosch, Thomas, 2021. "Large sample autocovariance matrices of linear processes with heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 344-375.
- Gusakova, Anna & Heiny, Johannes & Thäle, Christoph, 2023. "The volume of random simplices from elliptical distributions in high dimension," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 357-382.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Heiny, Johannes & Mikosch, Thomas, 2021. "Large sample autocovariance matrices of linear processes with heavy tails," Stochastic Processes and their Applications, Elsevier, vol. 141(C), pages 344-375.
- Merlevède, F. & Peligrad, M., 2016. "On the empirical spectral distribution for matrices with long memory and independent rows," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2734-2760.
- Heiny, Johannes & Mikosch, Thomas, 2017. "Eigenvalues and eigenvectors of heavy-tailed sample covariance matrices with general growth rates: The iid case," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2179-2207.
- Asma Teimouri & Mahbanoo Tata & Mohsen Rezapour & Rafal Kulik & Narayanaswamy Balakrishnan, 2021. "Asymptotic Behavior of Eigenvalues of Variance-Covariance Matrix of a High-Dimensional Heavy-Tailed Lévy Process," Methodology and Computing in Applied Probability, Springer, vol. 23(4), pages 1353-1375, December.
- Li, Yuling & Zhou, Huanchao & Hu, Jiang, 2023. "The eigenvector LSD of information plus noise matrices and its application to linear regression model," Statistics & Probability Letters, Elsevier, vol. 197(C).
- Davis, Richard A. & Mikosch, Thomas & Pfaffel, Oliver, 2016. "Asymptotic theory for the sample covariance matrix of a heavy-tailed multivariate time series," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 767-799.
- Onatski, A., 2018. "Asymptotics of the principal components estimator of large factor models with weak factors and i.i.d. Gaussian noise," Cambridge Working Papers in Economics 1808, Faculty of Economics, University of Cambridge.
- Hyungsik Roger Moon & Martin Weidner, 2015.
"Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects,"
Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
- Hyungsik Roger Moon & Martin Weidner, 2013. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers CWP49/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Hyungsik Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers CWP35/14, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Daisuke Kurisu & Taisuke Otsu, 2021. "Nonparametric inference for extremal conditional quantiles," STICERD - Econometrics Paper Series 616, Suntory and Toyota International Centres for Economics and Related Disciplines, LSE.
- Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019.
"A diagnostic criterion for approximate factor structure,"
Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
- Patrick Gagliardini & Elisa Ossola & Olivier Scaillet, 2016. "A diagnostic criterion for approximate factor structure," Papers 1612.04990, arXiv.org, revised Aug 2017.
- Patrick Gagliardini & Elisa Ossola & O. Scaillet, 2016. "A Diagnostic Criterion for Approximate Factor Structure," Swiss Finance Institute Research Paper Series 16-51, Swiss Finance Institute, revised Dec 2016.
- Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
- Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Dynamic linear panel regression models with interactive fixed effects," CeMMAP working papers 47/14, Institute for Fiscal Studies.
- M. Capitaine, 2013. "Additive/Multiplicative Free Subordination Property and Limiting Eigenvectors of Spiked Additive Deformations of Wigner Matrices and Spiked Sample Covariance Matrices," Journal of Theoretical Probability, Springer, vol. 26(3), pages 595-648, September.
- Bai, Zhidong & Silverstein, Jack W., 2022. "A tribute to P.R. Krishnaiah," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
- Fleermann, Michael & Kirsch, Werner & Kriecherbauer, Thomas, 2021. "The almost sure semicircle law for random band matrices with dependent entries," Stochastic Processes and their Applications, Elsevier, vol. 131(C), pages 172-200.
- Kamil Jurczak, 2015. "A Universal Expectation Bound on Empirical Projections of Deformed Random Matrices," Journal of Theoretical Probability, Springer, vol. 28(2), pages 650-666, June.
- Yumou Qiu & Song Xi Chen, 2015.
"Bandwidth Selection for High-Dimensional Covariance Matrix Estimation,"
Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(511), pages 1160-1174, September.
- Qiu, Yumou & Chen, Song Xi, 2014. "Band Width Selection for High Dimensional Covariance Matrix Estimation," MPRA Paper 59641, University Library of Munich, Germany.
- Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
- Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 35/14, Institute for Fiscal Studies.
- Martin, Ian W.R. & Nagel, Stefan, 2022.
"Market efficiency in the age of big data,"
Journal of Financial Economics, Elsevier, vol. 145(1), pages 154-177.
- Ian Martin & Stefan Nagel, 2019. "Market Efficiency in the Age of Big Data," NBER Working Papers 26586, National Bureau of Economic Research, Inc.
- Martin, Ian W.R. & Nagel, Stefan, 2022. "Market efficiency in the age of big data," LSE Research Online Documents on Economics 112960, London School of Economics and Political Science, LSE Library.
- Martin, Ian & Nagel, Stefan, 2019. "Market Efficiency in the Age of Big Data," CEPR Discussion Papers 14235, C.E.P.R. Discussion Papers.
- Ian Martin & Stefan Nagel, 2019. "Market Efficiency in the Age of Big Data," CESifo Working Paper Series 8015, CESifo.
More about this item
Keywords
Sample correlation matrix; Infinite fourth moment; Largest eigenvalue; Smallest eigenvalue; Spectral distribution; Sample covariance matrix; Self-normalization; Regular variation; Combinatorics;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:128:y:2018:i:8:p:2779-2815. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.