IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v28y2015i2d10.1007_s10959-013-0517-9.html
   My bibliography  Save this article

A Universal Expectation Bound on Empirical Projections of Deformed Random Matrices

Author

Listed:
  • Kamil Jurczak

    (Ruhr-Universität Bochum)

Abstract

Let $$C$$ C be a real-valued $$M\times M$$ M × M matrix with singular values $$\lambda _1\ge \cdots \ge \lambda _M$$ λ 1 ≥ ⋯ ≥ λ M , and $$E$$ E a random matrix of centered i.i.d. entries with finite fourth moment. In this paper, we give a universal upper bound on the expectation of $$||\hat{\pi }_rX||_{S_2}^2-||\pi _rX||^2_{S_2}$$ | | π ^ r X | | S 2 2 - | | π r X | | S 2 2 , where $$X:=C+E$$ X : = C + E and $$\hat{\pi }_r$$ π ^ r (resp. $$\pi _r$$ π r ) is a rank- $$r$$ r projection maximizing the Hilbert–Schmidt norm $$||{\tilde{\pi }}_rX||_{S_2}$$ | | π ~ r X | | S 2 (resp. $$||{\tilde{\pi }}_rC||_{S_2}$$ | | π ~ r C | | S 2 ) over the set $$\mathcal{S }_{M,r}$$ S M , r of all orthogonal rank- $$r$$ r projections. This result is a generalization of a theorem for Gaussian matrices due to [7]. Our approach differs substantially from the techniques of the mentioned article. We analyze $$||\hat{\pi }_rX||_{S_2}^2-||\pi _rX||^2_{S_2}$$ | | π ^ r X | | S 2 2 - | | π r X | | S 2 2 from a rather deterministic point of view by an upper bound on $$||\hat{\pi }_rX||_{S_2}^2-||\pi _rX||^2_{S_2}$$ | | π ^ r X | | S 2 2 - | | π r X | | S 2 2 , whose randomness is totally determined by the largest singular value of $$E$$ E .

Suggested Citation

  • Kamil Jurczak, 2015. "A Universal Expectation Bound on Empirical Projections of Deformed Random Matrices," Journal of Theoretical Probability, Springer, vol. 28(2), pages 650-666, June.
  • Handle: RePEc:spr:jotpro:v:28:y:2015:i:2:d:10.1007_s10959-013-0517-9
    DOI: 10.1007/s10959-013-0517-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-013-0517-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-013-0517-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bai, Z. D. & Silverstein, Jack W. & Yin, Y. Q., 1988. "A note on the largest eigenvalue of a large dimensional sample covariance matrix," Journal of Multivariate Analysis, Elsevier, vol. 26(2), pages 166-168, August.
    2. Benaych-Georges, Florent & Nadakuditi, Raj Rao, 2012. "The singular values and vectors of low rank perturbations of large rectangular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 120-135.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Onatski, A., 2018. "Asymptotics of the principal components estimator of large factor models with weak factors and i.i.d. Gaussian noise," Cambridge Working Papers in Economics 1808, Faculty of Economics, University of Cambridge.
    2. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    3. Gagliardini, Patrick & Ossola, Elisa & Scaillet, Olivier, 2019. "A diagnostic criterion for approximate factor structure," Journal of Econometrics, Elsevier, vol. 212(2), pages 503-521.
    4. Leeb, William, 2022. "Optimal singular value shrinkage for operator norm loss: Extending to non-square matrices," Statistics & Probability Letters, Elsevier, vol. 186(C).
    5. Peng, Liuhua & Chen, Song Xi & Zhou, Wen, 2016. "More powerful tests for sparse high-dimensional covariances matrices," Journal of Multivariate Analysis, Elsevier, vol. 149(C), pages 124-143.
    6. Barigozzi, Matteo & Trapani, Lorenzo, 2020. "Sequential testing for structural stability in approximate factor models," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 5149-5187.
    7. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    8. Bai, Zhidong & Silverstein, Jack W., 2022. "A tribute to P.R. Krishnaiah," Journal of Multivariate Analysis, Elsevier, vol. 188(C).
    9. Heiny, Johannes & Mikosch, Thomas, 2017. "Eigenvalues and eigenvectors of heavy-tailed sample covariance matrices with general growth rates: The iid case," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2179-2207.
    10. Qiu, Yumou & Chen, Songxi, 2012. "Test for Bandedness of High Dimensional Covariance Matrices with Bandwidth Estimation," MPRA Paper 46242, University Library of Munich, Germany.
    11. Hyungsik Roger Roger Moon & Martin Weidner, 2014. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 35/14, Institute for Fiscal Studies.
    12. Martin, Ian W.R. & Nagel, Stefan, 2022. "Market efficiency in the age of big data," Journal of Financial Economics, Elsevier, vol. 145(1), pages 154-177.
    13. Ningning Xia & Zhidong Bai, 2015. "Functional CLT of eigenvectors for large sample covariance matrices," Statistical Papers, Springer, vol. 56(1), pages 23-60, February.
    14. Hyungsik Roger Roger Moon & Martin Weidner, 2013. "Linear regression for panel with unknown number of factors as interactive fixed effects," CeMMAP working papers 49/13, Institute for Fiscal Studies.
    15. Hugo Freeman & Martin Weidner, 2021. "Low-rank approximations of nonseparable panel models," The Econometrics Journal, Royal Economic Society, vol. 24(2), pages 40-77.
    16. Greenaway-McGrevy, Ryan & Han, Chirok & Sul, Donggyu, 2012. "Asymptotic distribution of factor augmented estimators for panel regression," Journal of Econometrics, Elsevier, vol. 169(1), pages 48-53.
    17. Ding, Xiucai & Ji, Hong Chang, 2023. "Spiked multiplicative random matrices and principal components," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 25-60.
    18. Lin, Wei & Li, Min & Zhou, Shuming & Liu, Jiafei & Chen, Gaolin & Zhou, Qianru, 2021. "Phase transition in spectral clustering based on resistance matrix," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    19. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    20. Feldman, Michael J., 2023. "Spiked singular values and vectors under extreme aspect ratios," Journal of Multivariate Analysis, Elsevier, vol. 196(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:28:y:2015:i:2:d:10.1007_s10959-013-0517-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.