IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v127y2017i2p497-525.html
   My bibliography  Save this article

Extremes of locally stationary chi-square processes with trend

Author

Listed:
  • Liu, Peng
  • Ji, Lanpeng

Abstract

Chi-square processes with trend appear naturally as limiting processes in various statistical models. In this paper we are concerned with the exact tail asymptotics of the supremum taken over (0,1) of a class of locally stationary chi-square processes with particular admissible trends. An important tool for establishing our results is a weak version of Slepian’s lemma for chi-square processes. Some special cases including squared Brownian bridge and Bessel process are discussed.

Suggested Citation

  • Liu, Peng & Ji, Lanpeng, 2017. "Extremes of locally stationary chi-square processes with trend," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 497-525.
  • Handle: RePEc:eee:spapps:v:127:y:2017:i:2:p:497-525
    DOI: 10.1016/j.spa.2016.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414916300904
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hüsler, J. & Piterbarg, V., 1999. "Extremes of a certain class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 257-271, October.
    2. Jarusková, Daniela & Piterbarg, Vladimir I., 2011. "Log-likelihood ratio test for detecting transient change," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 552-559, May.
    3. Jaromír Antoch & Daniela Jarušková, 2013. "Testing for multiple change points," Computational Statistics, Springer, vol. 28(5), pages 2161-2183, October.
    4. Dëbicki, Krzysztof & Kisowski, Pawel, 2008. "A note on upper estimates for Pickands constants," Statistics & Probability Letters, Elsevier, vol. 78(14), pages 2046-2051, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao, Wanli, 2021. "Extremes of locally stationary Gaussian and chi fields on manifolds," Stochastic Processes and their Applications, Elsevier, vol. 133(C), pages 166-192.
    2. Ji, Lanpeng & Liu, Peng & Robert, Stephan, 2019. "Tail asymptotic behavior of the supremum of a class of chi-square processes," Statistics & Probability Letters, Elsevier, vol. 154(C), pages 1-1.
    3. Popivoda, Goran & Stamatović, Siniša, 2019. "On probability of high extremes of Gaussian fields with a smooth random trend," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 29-35.
    4. Piterbarg, Vladimir I. & Rodionov, Igor V., 2020. "High excursions of Bessel and related random processes," Stochastic Processes and their Applications, Elsevier, vol. 130(8), pages 4859-4872.
    5. Andriy Olenko & Dareen Omari, 2020. "Reduction Principle for Functionals of Vector Random Fields," Methodology and Computing in Applied Probability, Springer, vol. 22(2), pages 573-598, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniela Jarušková, 2015. "Detecting non-simultaneous changes in means of vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 681-700, December.
    2. Krzysztof Dȩbicki & Zbigniew Michna & Xiaofan Peng, 2019. "Approximation of Sojourn Times of Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1183-1213, December.
    3. Long Bai & Krzysztof Dȩbicki & Enkelejd Hashorva & Li Luo, 2018. "On Generalised Piterbarg Constants," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 137-164, March.
    4. Cheng, Dan, 2016. "Excursion probability of certain non-centered smooth Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 883-905.
    5. Hüsler, J. & Piterbarg, V., 2004. "On the ruin probability for physical fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 315-332, October.
    6. Enkelejd Hashorva & Jürg Hüsler, 2000. "Extremes of Gaussian Processes with Maximal Variance near the Boundary Points," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 255-269, September.
    7. Bai, Long & Luo, Li, 2017. "Parisian ruin of the Brownian motion risk model with constant force of interest," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 34-44.
    8. Jaromír Antoch & Daniela Jarušková, 2013. "Testing for multiple change points," Computational Statistics, Springer, vol. 28(5), pages 2161-2183, October.
    9. Markevičiūtė, J., 2016. "Epidemic change tests for the mean of innovations of an AR(1) process," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 79-91.
    10. Krzysztof Dȩbicki, 2022. "Exact asymptotics of Gaussian-driven tandem queues," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 285-287, April.
    11. Hüsler, Jürg & Piterbarg, Vladimir, 2004. "Limit theorem for maximum of the storage process with fractional Brownian motion as input," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 231-250, December.
    12. Pingjin Deng, 2016. "The joint distributions of running maximum of a Slepian processes," Papers 1609.04529, arXiv.org.
    13. Bai, Long, 2020. "Extremes of standard multifractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 159(C).
    14. Diop, Mamadou Lamine & Kengne, William, 2022. "Epidemic change-point detection in general causal time series," Statistics & Probability Letters, Elsevier, vol. 184(C).
    15. Dȩbicki, Krzysztof & Hashorva, Enkelejd & Ji, Lanpeng & Tabiś, Kamil, 2015. "Extremes of vector-valued Gaussian processes: Exact asymptotics," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4039-4065.
    16. Marie Hušková & Zuzana Prášková, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 265-269, June.
    17. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    18. De[combining cedilla]bicki, Krzysztof & Kisowski, Pawel, 2008. "Asymptotics of supremum distribution of [alpha](t)-locally stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2022-2037, November.
    19. Tan, Zhongquan & Hashorva, Enkelejd, 2013. "Exact asymptotics and limit theorems for supremum of stationary χ-processes over a random interval," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 2983-2998.
    20. Popivoda, Goran & Stamatović, Siniša, 2019. "On probability of high extremes of Gaussian fields with a smooth random trend," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 29-35.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:2:p:497-525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.