IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v184y2022ics0167715222000323.html
   My bibliography  Save this article

Epidemic change-point detection in general causal time series

Author

Listed:
  • Diop, Mamadou Lamine
  • Kengne, William

Abstract

We consider an epidemic change-point detection in a large class of causal time series models, including among other processes, AR(∞), ARCH(∞), TARCH(∞), ARMA-GARCH. A test statistic based on the Gaussian quasi-maximum likelihood estimator of the parameter is proposed. It is shown that, under the null hypothesis of no change, the test statistic converges to a distribution obtained from a difference of two Brownian bridge and diverges to infinity under the epidemic alternative. Numerical results for simulation and real data example are provided.

Suggested Citation

  • Diop, Mamadou Lamine & Kengne, William, 2022. "Epidemic change-point detection in general causal time series," Statistics & Probability Letters, Elsevier, vol. 184(C).
  • Handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000323
    DOI: 10.1016/j.spl.2022.109416
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715222000323
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2022.109416?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. F. Graiche & D. Merabet & D. Hamadouche, 2016. "Testing change in the variance with epidemic alternatives," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 45(13), pages 3822-3837, July.
    2. Kengne, William, 2021. "Strongly consistent model selection for general causal time series," Statistics & Probability Letters, Elsevier, vol. 171(C).
    3. Jarusková, Daniela & Piterbarg, Vladimir I., 2011. "Log-likelihood ratio test for detecting transient change," Statistics & Probability Letters, Elsevier, vol. 81(5), pages 552-559, May.
    4. Burman, Prabir & Shumway, Robert H., 2006. "Generalized Exponential Predictors for Time Series Forecasting," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1598-1606, December.
    5. Aston, John A.D. & Kirch, Claudia, 2012. "Detecting and estimating changes in dependent functional data," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 204-220.
    6. Juliana B. de Souza & Valdério A. Reisen & Glaura C. Franco & Márton Ispány & Pascal Bondon & Jane Meri Santos, 2018. "Generalized additive models with principal component analysis: an application to time series of respiratory disease and air pollution data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 67(2), pages 453-480, February.
    7. William Charky Kengne, 2012. "Testing for parameter constancy in general causal time‐series models," Journal of Time Series Analysis, Wiley Blackwell, vol. 33(3), pages 503-518, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamadou Lamine Diop & William Kengne, 2023. "A general procedure for change-point detection in multivariate time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 32(1), pages 1-33, March.
    2. Markevičiūtė, J., 2016. "Epidemic change tests for the mean of innovations of an AR(1) process," Statistics & Probability Letters, Elsevier, vol. 112(C), pages 79-91.
    3. Bucchia, Béatrice & Wendler, Martin, 2017. "Change-point detection and bootstrap for Hilbert space valued random fields," Journal of Multivariate Analysis, Elsevier, vol. 155(C), pages 344-368.
    4. Horváth, Lajos & Rice, Gregory & Zhao, Yuqian, 2022. "Change point analysis of covariance functions: A weighted cumulative sum approach," Journal of Multivariate Analysis, Elsevier, vol. 189(C).
    5. Buddhananda Banerjee & Satyaki Mazumder, 2018. "A more powerful test identifying the change in mean of functional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 70(3), pages 691-715, June.
    6. Kengne, William, 2021. "Strongly consistent model selection for general causal time series," Statistics & Probability Letters, Elsevier, vol. 171(C).
    7. Daniela Jarušková, 2015. "Detecting non-simultaneous changes in means of vectors," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(4), pages 681-700, December.
    8. Joseph Ngatchou-Wandji & Echarif Elharfaoui & Michel Harel, 2022. "On change-points tests based on two-samples U-Statistics for weakly dependent observations," Statistical Papers, Springer, vol. 63(1), pages 287-316, February.
    9. Holger Dette & Kevin Kokot & Stanislav Volgushev, 2020. "Testing relevant hypotheses in functional time series via self‐normalization," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 82(3), pages 629-660, July.
    10. William Kengne & Isidore S. Ngongo, 2022. "Inference for nonstationary time series of counts with application to change-point problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 74(4), pages 801-835, August.
    11. Maria Mohr & Natalie Neumeyer, 2021. "Nonparametric volatility change detection," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(2), pages 529-548, June.
    12. Axel Bücher & Holger Dette & Florian Heinrichs, 2020. "Detecting deviations from second-order stationarity in locally stationary functional time series," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 72(4), pages 1055-1094, August.
    13. Jaromír Antoch & Daniela Jarušková, 2013. "Testing for multiple change points," Computational Statistics, Springer, vol. 28(5), pages 2161-2183, October.
    14. Cho, Haeran & Kirch, Claudia, 2024. "Data segmentation algorithms: Univariate mean change and beyond," Econometrics and Statistics, Elsevier, vol. 30(C), pages 76-95.
    15. J. Derek Tucker & Drew Yarger, 2024. "Elastic functional changepoint detection of climate impacts from localized sources," Environmetrics, John Wiley & Sons, Ltd., vol. 35(1), February.
    16. John Aston, 2014. "Comments on: Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 256-257, June.
    17. Anagnostidis, Panagiotis & Fontaine, Patrice, 2020. "Liquidity commonality and high frequency trading: Evidence from the French stock market," International Review of Financial Analysis, Elsevier, vol. 69(C).
    18. Bardet, Jean-Marc & Kengne, William, 2014. "Monitoring procedure for parameter change in causal time series," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 204-221.
    19. Kathrin Bissantz & Nicolai Bissantz & Katharina Proksch, 2021. "Nonparametric detection of changes over time in image data from fluorescence microscopy of living cells," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(3), pages 1001-1017, September.
    20. Tan, Zhongquan & Hashorva, Enkelejd, 2013. "Exact asymptotics and limit theorems for supremum of stationary χ-processes over a random interval," Stochastic Processes and their Applications, Elsevier, vol. 123(8), pages 2983-2998.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:184:y:2022:i:c:s0167715222000323. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.