IDEAS home Printed from https://ideas.repec.org/a/spr/metcap/v2y2000i3d10.1023_a1010029228490.html
   My bibliography  Save this article

Extremes of Gaussian Processes with Maximal Variance near the Boundary Points

Author

Listed:
  • Enkelejd Hashorva

    (University of Bern)

  • Jürg Hüsler

    (University of Bern)

Abstract

Let X(t), t∈[0,1], be a Gaussian process with continuous paths with mean zero and nonconstant variance. The largest values of the Gaussian process occur in the neighborhood of the points of maximum variance. If there is a unique fixed point t0 in the interval [0,1], the behavior of P{supt∈[0,1] X(t)>u} is known for u→∞. We investigate the case where the unique point t0 = tu depends on u and tends to the boundary. This is reasonable for a family of Gaussian processes Xu(t) depending on u, which have for each u such a unique point tu tending to the boundary as u→∞. We derive the asymptotic behavior of P{supt∈[0,1] X(t)>u}, depending on the rate as tu tends to 0 or 1. Some applications are mentioned and the computation of a particular case is used to compare simulated probabilities with the asymptotic formula. We consider the exceedances of such a nonconstant boundary by a Ornstein-Uhlenbeck process. It shows the difficulties to simulate such rare events, when u is large.

Suggested Citation

  • Enkelejd Hashorva & Jürg Hüsler, 2000. "Extremes of Gaussian Processes with Maximal Variance near the Boundary Points," Methodology and Computing in Applied Probability, Springer, vol. 2(3), pages 255-269, September.
  • Handle: RePEc:spr:metcap:v:2:y:2000:i:3:d:10.1023_a:1010029228490
    DOI: 10.1023/A:1010029228490
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1023/A:1010029228490
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1023/A:1010029228490?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hüsler, J. & Piterbarg, V., 1999. "Extremes of a certain class of Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 83(2), pages 257-271, October.
    2. Wolfgang Bischoff & Frank Miller, 2000. "Asymptotically Optimal Tests and Optimal Designs for Testing the Mean in Regression Models with Applications to Change-Point Problems," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 52(4), pages 658-679, December.
    3. Hüsler, J., 1999. "Extremes of Gaussian processes, on results of Piterbarg and Seleznjev," Statistics & Probability Letters, Elsevier, vol. 44(3), pages 251-258, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhongquan Tan & Enkelejd Hashorva, 2014. "On Piterbarg Max-Discretisation Theorem for Standardised Maximum of Stationary Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 16(1), pages 169-185, March.
    2. Krzysztof Dȩbicki & Zbigniew Michna & Xiaofan Peng, 2019. "Approximation of Sojourn Times of Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1183-1213, December.
    3. Long Bai & Krzysztof Dȩbicki & Enkelejd Hashorva & Li Luo, 2018. "On Generalised Piterbarg Constants," Methodology and Computing in Applied Probability, Springer, vol. 20(1), pages 137-164, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cheng, Dan, 2016. "Excursion probability of certain non-centered smooth Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 883-905.
    2. Hüsler, J. & Piterbarg, V., 2004. "On the ruin probability for physical fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 315-332, October.
    3. Bai, Long & Luo, Li, 2017. "Parisian ruin of the Brownian motion risk model with constant force of interest," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 34-44.
    4. Krzysztof Dȩbicki, 2022. "Exact asymptotics of Gaussian-driven tandem queues," Queueing Systems: Theory and Applications, Springer, vol. 100(3), pages 285-287, April.
    5. Hüsler, Jürg & Piterbarg, Vladimir, 2004. "Limit theorem for maximum of the storage process with fractional Brownian motion as input," Stochastic Processes and their Applications, Elsevier, vol. 114(2), pages 231-250, December.
    6. Pingjin Deng, 2016. "The joint distributions of running maximum of a Slepian processes," Papers 1609.04529, arXiv.org.
    7. Bai, Long, 2020. "Extremes of standard multifractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 159(C).
    8. Krzysztof Dȩbicki & Zbigniew Michna & Xiaofan Peng, 2019. "Approximation of Sojourn Times of Gaussian Processes," Methodology and Computing in Applied Probability, Springer, vol. 21(4), pages 1183-1213, December.
    9. De[combining cedilla]bicki, Krzysztof & Kisowski, Pawel, 2008. "Asymptotics of supremum distribution of [alpha](t)-locally stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2022-2037, November.
    10. Liu, Peng & Ji, Lanpeng, 2017. "Extremes of locally stationary chi-square processes with trend," Stochastic Processes and their Applications, Elsevier, vol. 127(2), pages 497-525.
    11. Popivoda, Goran & Stamatović, Siniša, 2019. "On probability of high extremes of Gaussian fields with a smooth random trend," Statistics & Probability Letters, Elsevier, vol. 147(C), pages 29-35.
    12. Hüsler, Jürg & Piterbarg, Vladimir, 2008. "A limit theorem for the time of ruin in a Gaussian ruin problem," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2014-2021, November.
    13. Hüsler, Jürg & Zhang, Yueming, 2008. "On first and last ruin times of Gaussian processes," Statistics & Probability Letters, Elsevier, vol. 78(10), pages 1230-1235, August.
    14. Blanchet, Jose & Lam, Henry, 2013. "A heavy traffic approach to modeling large life insurance portfolios," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 237-251.
    15. Debicki, Krzysztof, 2002. "Ruin probability for Gaussian integrated processes," Stochastic Processes and their Applications, Elsevier, vol. 98(1), pages 151-174, March.
    16. Friede, T. & Miller, F. & Bischoff, W. & Kieser, M., 2001. "A note on change point estimation in dose-response trials," Computational Statistics & Data Analysis, Elsevier, vol. 37(2), pages 219-232, August.
    17. Bisewski, Krzysztof & Dȩbicki, Krzysztof & Kriukov, Nikolai, 2023. "Simultaneous ruin probability for multivariate Gaussian risk model," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 386-408.
    18. Ji, Lanpeng & Peng, Xiaofan, 2023. "Extreme value theory for a sequence of suprema of a class of Gaussian processes with trend," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 418-452.
    19. Pingjin Deng, 2018. "The Joint Distribution of Running Maximum of a Slepian Process," Methodology and Computing in Applied Probability, Springer, vol. 20(4), pages 1123-1135, December.
    20. Debicki, K. & Kosinski, K.M. & Mandjes, M. & Rolski, T., 2010. "Extremes of multidimensional Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2289-2301, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:metcap:v:2:y:2000:i:3:d:10.1023_a:1010029228490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.