An integral representation of dilatively stable processes with independent increments
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2016.06.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Pilipauskaitė, Vytautė & Surgailis, Donatas, 2014. "Joint temporal and contemporaneous aggregation of random-coefficient AR(1) processes," Stochastic Processes and their Applications, Elsevier, vol. 124(2), pages 1011-1035.
- Wolfe, Stephen James, 1982. "On a continuous analogue of the stochastic difference equation Xn=[rho]Xn-1+Bn," Stochastic Processes and their Applications, Elsevier, vol. 12(3), pages 301-312, May.
- Becker-Kern, Peter, 2004. "Random integral representation of operator-semi-self-similar processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 327-344, February.
- Jeanblanc, M. & Pitman, J. & Yor, M., 0. "Self-similar processes with independent increments associated with Lévy and Bessel processes," Stochastic Processes and their Applications, Elsevier, vol. 100(1-2), pages 223-231, July.
- Kern, Peter & Wedrich, Lina, 2015. "Dilatively semistable stochastic processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 101-108.
- Es-sebaiy, Khalifa & Ouknine, Youssef, 2008. "How rich is the class of processes which are infinitely divisible with respect to time?," Statistics & Probability Letters, Elsevier, vol. 78(5), pages 537-547, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Becker-Kern, Peter & Pap, Gyula, 2008. "Parameter estimation of selfsimilarity exponents," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 117-140, January.
- Taufer, Emanuele & Leonenko, Nikolai, 2009.
"Simulation of Lvy-driven Ornstein-Uhlenbeck processes with given marginal distribution,"
Computational Statistics & Data Analysis, Elsevier, vol. 53(6), pages 2427-2437, April.
- Emanuele Taufer & Nikolai Leonenko, 2007. "Simulation of Lévy-driven Ornstein-Uhlenbeck processes with given marginal distribution," Quaderni DISA 123, Department of Computer and Management Sciences, University of Trento, Italy, revised 23 May 2007.
- Maejima, Makoto & Ueda, Yohei, 2010. "[alpha]-selfdecomposable distributions and related Ornstein-Uhlenbeck type processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2363-2389, December.
- Grahovac, Danijel & Leonenko, Nikolai N. & Taqqu, Murad S., 2019. "Limit theorems, scaling of moments and intermittency for integrated finite variance supOU processes," Stochastic Processes and their Applications, Elsevier, vol. 129(12), pages 5113-5150.
- Pilipauskaitė, Vytautė & Surgailis, Donatas, 2015. "Joint aggregation of random-coefficient AR(1) processes with common innovations," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 73-82.
- Doukhan, Paul & Jakubowski, Adam & Lopes, Silvia R.C. & Surgailis, Donatas, 2019. "Discrete-time trawl processes," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1326-1348.
- Borovkov, Konstantin & Novikov, Alexander, 2008. "On exit times of Lévy-driven Ornstein-Uhlenbeck processes," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1517-1525, September.
- Mai Jan-Frederik, 2014. "A note on the Galambos copula and its associated Bernstein function," Dependence Modeling, De Gruyter, vol. 2(1), pages 1-8, March.
- Pilipauskaitė, Vytautė & Surgailis, Donatas, 2017. "Scaling transition for nonlinear random fields with long-range dependence," Stochastic Processes and their Applications, Elsevier, vol. 127(8), pages 2751-2779.
- Surgailis, Donatas, 2024. "Scaling limits of nonlinear functions of random grain model, with application to Burgers’ equation," Stochastic Processes and their Applications, Elsevier, vol. 174(C).
- Puplinskaitė, Donata & Surgailis, Donatas, 2015. "Scaling transition for long-range dependent Gaussian random fields," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2256-2271.
- Kern, Peter & Wedrich, Lina, 2015. "Dilatively semistable stochastic processes," Statistics & Probability Letters, Elsevier, vol. 99(C), pages 101-108.
- Makoto Maejima & Taisuke Takamune & Yohei Ueda, 2014. "The Dichotomy of Recurrence and Transience of Semi-Lévy Processes," Journal of Theoretical Probability, Springer, vol. 27(3), pages 982-996, September.
- Zheng, Jing & Lin, Zhengyan & Tong, Changqing, 2009. "The Hausdorff dimension of the range for the Markov processes of Ornstein–Uhlenbeck type," Chaos, Solitons & Fractals, Elsevier, vol. 42(4), pages 2008-2013.
- Saigo, Tatsuhiko & Tamura, Yozo, 2006. "Operator semi-self-similar processes and their space-scaling matrices," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 675-681, April.
- Brockwell, Peter J. & Lindner, Alexander, 2015. "Prediction of Lévy-driven CARMA processes," Journal of Econometrics, Elsevier, vol. 189(2), pages 263-271.
- Hinderks, W.J. & Wagner, A., 2020. "Factor models in the German electricity market: Stylized facts, seasonality, and calibration," Energy Economics, Elsevier, vol. 85(C).
- Jurek, Zbigniew J., 2014. "Remarks on the factorization property of some random integrals," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 192-195.
- Dilip B. Madan & Wim Schoutens, 2020. "Self‐similarity in long‐horizon returns," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1368-1391, October.
- Wang, Xiaolong & Feng, Jing & Liu, Qi & Li, Yongge & Xu, Yong, 2022. "Neural network-based parameter estimation of stochastic differential equations driven by Lévy noise," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
More about this item
Keywords
Dilative stability; Translative stability; Lamperti transform; Additive process; Random integral representation; Wide sense Ornstein–Uhlenbeck process; Quasi-selfsimilar process; Time-stable process; Infinite divisibility with respect to time;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:127:y:2017:i:1:p:209-227. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.