IDEAS home Printed from https://ideas.repec.org/a/spr/jotpro/v27y2014i3d10.1007_s10959-012-0452-1.html
   My bibliography  Save this article

The Dichotomy of Recurrence and Transience of Semi-Lévy Processes

Author

Listed:
  • Makoto Maejima

    (Keio University)

  • Taisuke Takamune

    (Keio University)

  • Yohei Ueda

    (Keio University)

Abstract

A semi-Lévy process is an additive process with periodically stationary increments. In particular, it is a generalization of a Lévy process. The dichotomy of recurrence and transience of Lévy processes is well known, but this is not necessarily true for general additive processes. In this paper, we prove the recurrence and transience dichotomy of semi-Lévy processes. For the proof, we introduce a concept of semi-random walk and discuss its recurrence and transience properties. An example of semi-Lévy process constructed from two independent Lévy processes is investigated. Finally, we prove the laws of large numbers for semi-Lévy processes.

Suggested Citation

  • Makoto Maejima & Taisuke Takamune & Yohei Ueda, 2014. "The Dichotomy of Recurrence and Transience of Semi-Lévy Processes," Journal of Theoretical Probability, Springer, vol. 27(3), pages 982-996, September.
  • Handle: RePEc:spr:jotpro:v:27:y:2014:i:3:d:10.1007_s10959-012-0452-1
    DOI: 10.1007/s10959-012-0452-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10959-012-0452-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10959-012-0452-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Becker-Kern, Peter, 2004. "Random integral representation of operator-semi-self-similar processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 109(2), pages 327-344, February.
    2. Makoto Maejima & Ken-iti Sato, 1999. "Semi-Selfsimilar Processes," Journal of Theoretical Probability, Springer, vol. 12(2), pages 347-373, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Becker-Kern, Peter & Pap, Gyula, 2008. "Parameter estimation of selfsimilarity exponents," Journal of Multivariate Analysis, Elsevier, vol. 99(1), pages 117-140, January.
    2. Saigo, Tatsuhiko & Tamura, Yozo, 2006. "Operator semi-self-similar processes and their space-scaling matrices," Statistics & Probability Letters, Elsevier, vol. 76(7), pages 675-681, April.
    3. Kenneth J. Falconer, 2002. "Tangent Fields and the Local Structure of Random Fields," Journal of Theoretical Probability, Springer, vol. 15(3), pages 731-750, July.
    4. Toshiro Watanabe, 2016. "Escape Rates for Multidimensional Shift Self-similar Additive Sequences," Journal of Theoretical Probability, Springer, vol. 29(3), pages 896-921, September.
    5. Bhatti, T. & Kern, P., 2017. "An integral representation of dilatively stable processes with independent increments," Stochastic Processes and their Applications, Elsevier, vol. 127(1), pages 209-227.
    6. Peter Kern & Mark M. Meerschaert & Yimin Xiao, 2018. "Asymptotic Behavior of Semistable Lévy Exponents and Applications to Fractal Path Properties," Journal of Theoretical Probability, Springer, vol. 31(1), pages 598-617, March.
    7. Toshiro Watanabe, 2002. "Shift Self-Similar Additive Random Sequences Associated with Supercritical Branching Processes," Journal of Theoretical Probability, Springer, vol. 15(3), pages 631-665, July.
    8. Takahashi, Hiroshi & Tamura, Yozo, 2023. "Diffusion processes in Brownian environments on disconnected selfsimilar fractal sets in R," Statistics & Probability Letters, Elsevier, vol. 193(C).
    9. Tomasz Luks & Yimin Xiao, 2020. "Multiple Points of Operator Semistable Lévy Processes," Journal of Theoretical Probability, Springer, vol. 33(1), pages 153-179, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jotpro:v:27:y:2014:i:3:d:10.1007_s10959-012-0452-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.