IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v126y2016i9p2787-2799.html
   My bibliography  Save this article

The sequential empirical process of a random walk in random scenery

Author

Listed:
  • Wendler, Martin

Abstract

A random walk in random scenery (Yn)n∈N is given by Yn=ξSn for a random walk (Sn)n∈N and i.i.d. random variables (ξn)n∈Z. In this paper, we will show the weak convergence of the sequential empirical process, i.e. the centered and rescaled empirical distribution function. The limit process shows a new type of behavior, combining properties of the limit in the independent case (roughness of the paths) and in the long range dependent case (self-similarity).

Suggested Citation

  • Wendler, Martin, 2016. "The sequential empirical process of a random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2787-2799.
  • Handle: RePEc:eee:spapps:v:126:y:2016:i:9:p:2787-2799
    DOI: 10.1016/j.spa.2016.03.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030441491600048X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2016.03.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khoshnevisan, Davar & Lewis, Thomas M., 1998. "A law of the iterated logarithm for stable processes in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 74(1), pages 89-121, May.
    2. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Li-Xin, 2001. "The strong approximation for the Kesten-Spitzer random walk," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 21-26, May.
    2. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    3. Rademacher, Daniel & Kreiß, Jens-Peter & Paparoditis, Efstathios, 2024. "Asymptotic normality of spectral means of Hilbert space valued random processes," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    4. Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
      • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.
    5. Dominicy, Yves & Hörmann, Siegfried & Ogata, Hiroaki & Veredas, David, 2013. "On sample marginal quantiles for stationary processes," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 28-36.
    6. Guodong Pang & Ward Whitt, 2012. "The Impact of Dependent Service Times on Large-Scale Service Systems," Manufacturing & Service Operations Management, INFORMS, vol. 14(2), pages 262-278, April.
    7. Chen, Xia & Rosen, Jay, 2010. "Large deviations and renormalization for Riesz potentials of stable intersection measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1837-1878, August.
    8. Thomas M. Lewis, 2001. "The Length of the Longest Head-Run in a Model with Long Range Dependence," Journal of Theoretical Probability, Springer, vol. 14(2), pages 357-378, April.
    9. Phillips, Peter C.B. & Wang, Ying, 2022. "Functional coefficient panel modeling with communal smoothing covariates," Journal of Econometrics, Elsevier, vol. 227(2), pages 371-407.
    10. Buchsteiner, Jannis, 2015. "Weak convergence of the weighted sequential empirical process of some long-range dependent data," Statistics & Probability Letters, Elsevier, vol. 96(C), pages 170-179.
    11. Chen, Xia, 2006. "Self-intersection local times of additive processes: Large deviation and law of the iterated logarithm," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1236-1253, September.
    12. Révész, Pál & Shi, Zhan, 2000. "Strong approximation of spatial random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 88(2), pages 329-345, August.
    13. Csáki, Endre & König, Wolfgang & Shi, Zhan, 1999. "An embedding for the Kesten-Spitzer random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 283-292, August.
    14. Ansgar Steland, 2016. "Asymptotics for random functions moderated by dependent noise," Statistical Inference for Stochastic Processes, Springer, vol. 19(3), pages 363-387, October.
    15. Jirak, Moritz, 2013. "A Darling–Erdös type result for stationary ellipsoids," Stochastic Processes and their Applications, Elsevier, vol. 123(6), pages 1922-1946.
    16. Csáki, Endre & Révész, Pál & Shi, Zhan, 2001. "A strong invariance principle for two-dimensional random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 181-200, April.
    17. Deuschel, Jean-Dominique & Fukushima, Ryoki, 2019. "Quenched tail estimate for the random walk in random scenery and in random layered conductance," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 102-128.
    18. Guodong Pang & Yuhang Zhou, 2018. "Two-parameter process limits for infinite-server queues with dependent service times via chaining bounds," Queueing Systems: Theory and Applications, Springer, vol. 88(1), pages 1-25, February.
    19. N. Guillotin-Plantard, 2001. "Dynamic ℤ d -Random Walks in a Random Scenery: A Strong Law of Large Numbers," Journal of Theoretical Probability, Springer, vol. 14(1), pages 241-260, January.
    20. Moritz Jirak, 2016. "Optimal Rate of Convergence for Empirical Quantiles and Distribution Functions for Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(6), pages 825-836, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:126:y:2016:i:9:p:2787-2799. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.