IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i9p1837-1878.html
   My bibliography  Save this article

Large deviations and renormalization for Riesz potentials of stable intersection measures

Author

Listed:
  • Chen, Xia
  • Rosen, Jay

Abstract

We study the object formally defined as where Xt denotes the symmetric stable processes of index 0

Suggested Citation

  • Chen, Xia & Rosen, Jay, 2010. "Large deviations and renormalization for Riesz potentials of stable intersection measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1837-1878, August.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:9:p:1837-1878
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00129-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khoshnevisan, Davar & Lewis, Thomas M., 1998. "A law of the iterated logarithm for stable processes in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 74(1), pages 89-121, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan, Litan & Yu, Xianye & Sun, Xichao, 2016. "Asymptotic behavior of the solution of the fractional heat equation," Statistics & Probability Letters, Elsevier, vol. 117(C), pages 54-61.
    2. Litan Yan & Xianye Yu, 2019. "Asymptotic Behavior for High Moments of the Fractional Heat Equation with Fractional Noise," Journal of Theoretical Probability, Springer, vol. 32(4), pages 1617-1646, December.
    3. Matsuda, Toyomu, 2022. "Integrated density of states of the Anderson Hamiltonian with two-dimensional white noise," Stochastic Processes and their Applications, Elsevier, vol. 153(C), pages 91-127.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Li-Xin, 2001. "The strong approximation for the Kesten-Spitzer random walk," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 21-26, May.
    2. Wendler, Martin, 2016. "The sequential empirical process of a random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2787-2799.
    3. Thomas M. Lewis, 2001. "The Length of the Longest Head-Run in a Model with Long Range Dependence," Journal of Theoretical Probability, Springer, vol. 14(2), pages 357-378, April.
    4. Révész, Pál & Shi, Zhan, 2000. "Strong approximation of spatial random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 88(2), pages 329-345, August.
    5. Csáki, Endre & Révész, Pál & Shi, Zhan, 2001. "A strong invariance principle for two-dimensional random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 181-200, April.
    6. Deuschel, Jean-Dominique & Fukushima, Ryoki, 2019. "Quenched tail estimate for the random walk in random scenery and in random layered conductance," Stochastic Processes and their Applications, Elsevier, vol. 129(1), pages 102-128.
    7. Guillotin-Plantard, Nadine & Poisat, Julien, 2013. "Quenched central limit theorems for random walks in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1348-1367.
    8. Chen, Xia, 2006. "Self-intersection local times of additive processes: Large deviation and law of the iterated logarithm," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1236-1253, September.
    9. Csáki, Endre & König, Wolfgang & Shi, Zhan, 1999. "An embedding for the Kesten-Spitzer random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 283-292, August.
    10. N. Guillotin-Plantard, 2001. "Dynamic ℤ d -Random Walks in a Random Scenery: A Strong Law of Large Numbers," Journal of Theoretical Probability, Springer, vol. 14(1), pages 241-260, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:9:p:1837-1878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.