Quenched tail estimate for the random walk in random scenery and in random layered conductance
Author
Abstract
Suggested Citation
DOI: 10.1016/j.spa.2018.02.011
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Gantert, Nina & van der Hofstad, Remco & König, Wolfgang, 2006. "Deviations of a random walk in a random scenery with stretched exponential tails," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 480-492, March.
- Castell, F. & Pradeilles, F., 2001. "Annealed large deviations for diffusions in a random Gaussian shear flow drift," Stochastic Processes and their Applications, Elsevier, vol. 94(2), pages 171-197, August.
- Csáki, Endre & König, Wolfgang & Shi, Zhan, 1999. "An embedding for the Kesten-Spitzer random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 283-292, August.
- Khoshnevisan, Davar & Lewis, Thomas M., 1998. "A law of the iterated logarithm for stable processes in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 74(1), pages 89-121, May.
- Chen, Xia, 2001. "Moderate deviations for Markovian occupation times," Stochastic Processes and their Applications, Elsevier, vol. 94(1), pages 51-70, July.
- Fleischmann, Klaus & Mörters, Peter & Wachtel, Vitali, 2008. "Moderate deviations for a random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 118(10), pages 1768-1802, October.
- Asselah, A. & Castell, F., 2003. "Quenched large deviations for diffusions in a random Gaussian shear flow drift," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 1-29, January.
- Zhang, Li-Xin, 2001. "The strong approximation for the Kesten-Spitzer random walk," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 21-26, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Andres, Sebastian & Croydon, David A. & Kumagai, Takashi, 2024. "Heat kernel fluctuations and quantitative homogenization for the one-dimensional Bouchaud trap model," Stochastic Processes and their Applications, Elsevier, vol. 172(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Gantert, Nina & van der Hofstad, Remco & König, Wolfgang, 2006. "Deviations of a random walk in a random scenery with stretched exponential tails," Stochastic Processes and their Applications, Elsevier, vol. 116(3), pages 480-492, March.
- Guillotin-Plantard, Nadine & Poisat, Julien, 2013. "Quenched central limit theorems for random walks in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 123(4), pages 1348-1367.
- Xinwei Feng & Qi-Man Shao & Ofer Zeitouni, 2021. "Self-normalized Moderate Deviations for Random Walk in Random Scenery," Journal of Theoretical Probability, Springer, vol. 34(1), pages 103-124, March.
- Fleischmann, Klaus & Mörters, Peter & Wachtel, Vitali, 2008. "Moderate deviations for a random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 118(10), pages 1768-1802, October.
- Chen, Xia, 2006. "Self-intersection local times of additive processes: Large deviation and law of the iterated logarithm," Stochastic Processes and their Applications, Elsevier, vol. 116(9), pages 1236-1253, September.
- Révész, Pál & Shi, Zhan, 2000. "Strong approximation of spatial random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 88(2), pages 329-345, August.
- Csáki, Endre & Révész, Pál & Shi, Zhan, 2001. "A strong invariance principle for two-dimensional random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 92(2), pages 181-200, April.
- N. Guillotin-Plantard, 2001. "Dynamic ℤ d -Random Walks in a Random Scenery: A Strong Law of Large Numbers," Journal of Theoretical Probability, Springer, vol. 14(1), pages 241-260, January.
- Zhang, Li-Xin, 2001. "The strong approximation for the Kesten-Spitzer random walk," Statistics & Probability Letters, Elsevier, vol. 53(1), pages 21-26, May.
- Wendler, Martin, 2016. "The sequential empirical process of a random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 126(9), pages 2787-2799.
- Chen, Xia & Rosen, Jay, 2010. "Large deviations and renormalization for Riesz potentials of stable intersection measures," Stochastic Processes and their Applications, Elsevier, vol. 120(9), pages 1837-1878, August.
- Thomas M. Lewis, 2001. "The Length of the Longest Head-Run in a Model with Long Range Dependence," Journal of Theoretical Probability, Springer, vol. 14(2), pages 357-378, April.
- Asselah, A. & Castell, F., 2003. "Quenched large deviations for diffusions in a random Gaussian shear flow drift," Stochastic Processes and their Applications, Elsevier, vol. 103(1), pages 1-29, January.
- Csáki, Endre & König, Wolfgang & Shi, Zhan, 1999. "An embedding for the Kesten-Spitzer random walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 283-292, August.
- Zhu, Lingjiong, 2013. "Moderate deviations for Hawkes processes," Statistics & Probability Letters, Elsevier, vol. 83(3), pages 885-890.
More about this item
Keywords
Random walk; Random scenery; Tail estimate; Moderate deviation; Large deviation; Random conductance model; Layered media;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:129:y:2019:i:1:p:102-128. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.