IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v83y2013i1p28-36.html
   My bibliography  Save this article

On sample marginal quantiles for stationary processes

Author

Listed:
  • Dominicy, Yves
  • Hörmann, Siegfried
  • Ogata, Hiroaki
  • Veredas, David

Abstract

We establish the asymptotic normality of marginal sample quantiles for S-mixing vector stationary processes. S-mixing is a recently introduced and widely applicable notion of dependence. Results of some Monte Carlo simulations are given.

Suggested Citation

  • Dominicy, Yves & Hörmann, Siegfried & Ogata, Hiroaki & Veredas, David, 2013. "On sample marginal quantiles for stationary processes," Statistics & Probability Letters, Elsevier, vol. 83(1), pages 28-36.
  • Handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:28-36
    DOI: 10.1016/j.spl.2012.07.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S016771521200288X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2012.07.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Sen, Pranab Kumar, 1972. "On the Bahadur representation of sample quantiles for sequences of [phi]-mixing random variables," Journal of Multivariate Analysis, Elsevier, vol. 2(1), pages 77-95, March.
    2. Jean-David FERMANIAN & Olivier SCAILLET, 2003. "Nonparametric Estimation of Copulas for Time Series," FAME Research Paper Series rp57, International Center for Financial Asset Management and Engineering.
    3. Oberhofer, Walter & Haupt, Harry, 2005. "The asymptotic distribution of the unconditional quantile estimator under dependence," Statistics & Probability Letters, Elsevier, vol. 73(3), pages 243-250, July.
    4. Babu, G. Jogesh & Rao, C. Radhakrishna, 1988. "Joint asymptotic distribution of marginal quantiles and quantile functions in samples from a multivariate population," Journal of Multivariate Analysis, Elsevier, vol. 27(1), pages 15-23, October.
    5. Dutta, Kalyan & Sen, Pranab Kumar, 1971. "On the Bahadur representation of sample quantiles in some stationary multivariate autoregressive processes," Journal of Multivariate Analysis, Elsevier, vol. 1(2), pages 186-198, June.
    6. Berkes, István & Hörmann, Siegfried & Schauer, Johannes, 2009. "Asymptotic results for the empirical process of stationary sequences," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1298-1324, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laurent, Sébastien & Shi, Shuping, 2020. "Volatility estimation and jump detection for drift–diffusion processes," Journal of Econometrics, Elsevier, vol. 217(2), pages 259-290.
    2. Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
      • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.
    3. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lajos Horváth & Gregory Rice, 2014. "Extensions of some classical methods in change point analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 23(2), pages 219-255, June.
    2. Dembińska, Anna, 2014. "Asymptotic behavior of central order statistics from stationary processes," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 348-372.
    3. Morettin Pedro A. & Toloi Clelia M.C. & Chiann Chang & de Miranda José C.S., 2011. "Wavelet Estimation of Copulas for Time Series," Journal of Time Series Econometrics, De Gruyter, vol. 3(3), pages 1-31, October.
    4. Guangwu Liu & Liu Jeff Hong, 2009. "Kernel estimation of quantile sensitivities," Naval Research Logistics (NRL), John Wiley & Sons, vol. 56(6), pages 511-525, September.
    5. Harvey, A., 2008. "Dynamic distributions and changing copulas," Cambridge Working Papers in Economics 0839, Faculty of Economics, University of Cambridge.
    6. Mingbin Ben Feng & Eunhye Song, 2020. "Efficient Nested Simulation Experiment Design via the Likelihood Ratio Method," Papers 2008.13087, arXiv.org, revised May 2024.
    7. Qinchi Zhang & Wenzhi Yang & Shuhe Hu, 2014. "On Bahadur representation for sample quantiles under α-mixing sequence," Statistical Papers, Springer, vol. 55(2), pages 285-299, May.
    8. Jeffrey Racine, 2015. "Mixed data kernel copulas," Empirical Economics, Springer, vol. 48(1), pages 37-59, February.
    9. Hutson, Alan D., 2002. "Quasi-medians are robust and relatively efficient estimators of a common mean given multivariate normality," Statistics & Probability Letters, Elsevier, vol. 57(4), pages 403-408, May.
    10. Jirak, Moritz, 2012. "Change-point analysis in increasing dimension," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 136-159.
    11. Sankar, Subhra & Bergsma, Wicher & Dassios, Angelos, 2017. "Testing independence of covariates and errors in nonparametric regression," LSE Research Online Documents on Economics 83780, London School of Economics and Political Science, LSE Library.
    12. Rademacher, Daniel & Kreiß, Jens-Peter & Paparoditis, Efstathios, 2024. "Asymptotic normality of spectral means of Hilbert space valued random processes," Stochastic Processes and their Applications, Elsevier, vol. 173(C).
    13. Yijun Zuo, 2015. "Bahadur representations for bootstrap quantiles," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 78(5), pages 597-610, July.
    14. Fantazzini, Dean, 2011. "Analysis of multidimensional probability distributions with copula functions," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 22(2), pages 98-134.
    15. Faugeras, Olivier P., 2009. "A quantile-copula approach to conditional density estimation," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2083-2099, October.
    16. Lorenzo Ricci & David Veredas, 2012. "TailCoR," Working Papers 1227, Banco de España.
      • Sla{dj}ana Babi'c & Christophe Ley & Lorenzo Ricci & David Veredas, 2020. "TailCoR," Papers 2011.14817, arXiv.org.
    17. Göran Kauermann & Christian Schellhase & David Ruppert, 2013. "Flexible Copula Density Estimation with Penalized Hierarchical B-splines," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 40(4), pages 685-705, December.
    18. Chitradipa Chakraborty & Subhra Sankar Dhar, 2020. "A Test for Multivariate Location Parameter in Elliptical Model Based on Forward Search Method," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 68-95, February.
    19. Beare, Brendan K. & Seo, Juwon, 2014. "Time Irreversible Copula-Based Markov Models," Econometric Theory, Cambridge University Press, vol. 30(5), pages 923-960, October.
    20. Diks, Cees & Panchenko, Valentyn & van Dijk, Dick, 2011. "Likelihood-based scoring rules for comparing density forecasts in tails," Journal of Econometrics, Elsevier, vol. 163(2), pages 215-230, August.

    More about this item

    Keywords

    Quantiles; S-mixing;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:83:y:2013:i:1:p:28-36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.