IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v124y2014i4p1566-1581.html
   My bibliography  Save this article

Comparison inequalities on Wiener space

Author

Listed:
  • Nourdin, Ivan
  • Peccati, Giovanni
  • Viens, Frederi G.

Abstract

We define a covariance-type operator on Wiener space: for F and G two random variables in the Gross–Sobolev space D1,2 of random variables with a square-integrable Malliavin derivative, we let ΓF,G≔〈DF,−DL−1G〉, where D is the Malliavin derivative operator and L−1 is the pseudo-inverse of the generator of the Ornstein–Uhlenbeck semigroup. We use Γ to extend the notion of covariance and canonical metric for vectors and random fields on Wiener space, and prove corresponding non-Gaussian comparison inequalities on Wiener space, which extend the Sudakov–Fernique result on comparison of expected suprema of Gaussian fields, and the Slepian inequality for functionals of Gaussian vectors. These results are proved using a so-called smart-path method on Wiener space, and are illustrated via various examples. We also illustrate the use of the same method by proving a Sherrington–Kirkpatrick universality result for spin systems in correlated and non-stationary non-Gaussian random media.

Suggested Citation

  • Nourdin, Ivan & Peccati, Giovanni & Viens, Frederi G., 2014. "Comparison inequalities on Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1566-1581.
  • Handle: RePEc:eee:spapps:v:124:y:2014:i:4:p:1566-1581
    DOI: 10.1016/j.spa.2013.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414913002986
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2013.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Viens, Frederi G., 2009. "Stein's lemma, Malliavin calculus, and tail bounds, with application to polymer fluctuation exponent," Stochastic Processes and their Applications, Elsevier, vol. 119(10), pages 3671-3698, October.
    2. Nualart, David & Saussereau, Bruno, 2009. "Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 391-409, February.
    3. Nourdin, Ivan & Simon, Thomas, 2006. "On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 907-912, May.
    4. Nualart, David & Ouknine, Youssef, 2002. "Regularization of differential equations by fractional noise," Stochastic Processes and their Applications, Elsevier, vol. 102(1), pages 103-116, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dȩbicki, Krzysztof & Hashorva, Enkelejd & Ji, Lanpeng & Tabiś, Kamil, 2015. "Extremes of vector-valued Gaussian processes: Exact asymptotics," Stochastic Processes and their Applications, Elsevier, vol. 125(11), pages 4039-4065.
    2. Peccati, Giovanni & Turchi, Nicola, 2023. "The discrepancy between min–max statistics of Gaussian and Gaussian-subordinated matrices," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 315-341.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiliang Fan, 2019. "Derivative Formulas and Applications for Degenerate Stochastic Differential Equations with Fractional Noises," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1360-1381, September.
    2. Fan, XiLiang, 2015. "Logarithmic Sobolev inequalities for fractional diffusion," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 165-172.
    3. Boufoussi, Brahim & Hajji, Salah, 2012. "Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1549-1558.
    4. Fan, Xiliang & Yu, Ting & Yuan, Chenggui, 2023. "Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 383-415.
    5. Shevchenko, Georgiy & Shalaiko, Taras, 2013. "Malliavin regularity of solutions to mixed stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2638-2646.
    6. Eric Djeutcha & Didier Alain Njamen Njomen & Louis-Aimé Fono, 2019. "Solving Arbitrage Problem on the Financial Market Under the Mixed Fractional Brownian Motion With Hurst Parameter H ∈]1/2,3/4[," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(1), pages 76-92, February.
    7. Baudoin, Fabrice & Ouyang, Cheng & Zhang, Xuejing, 2015. "Varadhan estimates for rough differential equations driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 125(2), pages 634-652.
    8. Kusuoka, Seiichiro & Tudor, Ciprian A., 2012. "Stein’s method for invariant measures of diffusions via Malliavin calculus," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1627-1651.
    9. Eden, Richard & Víquez, Juan, 2015. "Nourdin–Peccati analysis on Wiener and Wiener–Poisson space for general distributions," Stochastic Processes and their Applications, Elsevier, vol. 125(1), pages 182-216.
    10. Quer-Sardanyons, Lluís & Tindel, Samy, 2012. "Pathwise definition of second-order SDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 466-497.
    11. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
    12. David Baños & Salvador Ortiz-Latorre & Andrey Pilipenko & Frank Proske, 2022. "Strong Solutions of Stochastic Differential Equations with Generalized Drift and Multidimensional Fractional Brownian Initial Noise," Journal of Theoretical Probability, Springer, vol. 35(2), pages 714-771, June.
    13. Yamada, Toshihiro, 2015. "A formula of small time expansion for Young SDE driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 64-72.
    14. Mishura, Yu. & Nualart, D., 2004. "Weak solutions for stochastic differential equations with additive fractional noise," Statistics & Probability Letters, Elsevier, vol. 70(4), pages 253-261, December.
    15. Kęstutis Kubilius, 2024. "The Implicit Euler Scheme for FSDEs with Stochastic Forcing: Existence and Uniqueness of the Solution," Mathematics, MDPI, vol. 12(16), pages 1-18, August.
    16. Andreas Neuenkirch & Ivan Nourdin, 2007. "Exact Rate of Convergence of Some Approximation Schemes Associated to SDEs Driven by a Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 20(4), pages 871-899, December.
    17. Kubilius, K. & Skorniakov, V., 2016. "On some estimators of the Hurst index of the solution of SDE driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 109(C), pages 159-167.
    18. Yaozhong Hu & Samy Tindel, 2013. "Smooth Density for Some Nilpotent Rough Differential Equations," Journal of Theoretical Probability, Springer, vol. 26(3), pages 722-749, September.
    19. Sin, Myong-Guk & Ri, Kyong-Il & Kim, Kyong-Hui, 2022. "Existence and uniqueness of solution for coupled fractional mean-field forward–backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 190(C).
    20. Gassiat, Paul & Mądry, Łukasz, 2023. "Perturbations of singular fractional SDEs," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 137-172.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:124:y:2014:i:4:p:1566-1581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.