IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v122y2012i2p466-497.html
   My bibliography  Save this article

Pathwise definition of second-order SDEs

Author

Listed:
  • Quer-Sardanyons, Lluís
  • Tindel, Samy

Abstract

In this article, a class of second-order differential equations on [0,1], driven by a γ-Hölder continuous function for any value of γ∈(0,1) and with multiplicative noise, is considered. We first show how to solve this equation in a pathwise manner, thanks to Young integration techniques. We then study the differentiability of the solution with respect to the driving process and consider the case where the equation is driven by a fractional Brownian motion, with two aims in mind: show that the solution that we have produced coincides with the one which would be obtained with Malliavin calculus tools, and prove that the law of the solution is absolutely continuous with respect to the Lebesgue measure.

Suggested Citation

  • Quer-Sardanyons, Lluís & Tindel, Samy, 2012. "Pathwise definition of second-order SDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 466-497.
  • Handle: RePEc:eee:spapps:v:122:y:2012:i:2:p:466-497
    DOI: 10.1016/j.spa.2011.08.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414911002225
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2011.08.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nualart, David & Saussereau, Bruno, 2009. "Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 391-409, February.
    2. Quer-Sardanyons, Lluís & Tindel, Samy, 2007. "The 1-d stochastic wave equation driven by a fractional Brownian sheet," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1448-1472, October.
    3. Nualart, David & Pardoux, Etienne, 1991. "Second order stochastic differential equations with Dirichlet boundary conditions," Stochastic Processes and their Applications, Elsevier, vol. 39(1), pages 1-24, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge A. León & Samy Tindel, 2012. "Malliavin Calculus for Fractional Delay Equations," Journal of Theoretical Probability, Springer, vol. 25(3), pages 854-889, September.
    2. Fan, XiLiang, 2015. "Logarithmic Sobolev inequalities for fractional diffusion," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 165-172.
    3. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.
    4. Balan, Raluca M. & Tudor, Ciprian A., 2010. "The stochastic wave equation with fractional noise: A random field approach," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2468-2494, December.
    5. Yamada, Toshihiro, 2015. "A formula of small time expansion for Young SDE driven by fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 101(C), pages 64-72.
    6. Yaozhong Hu & Samy Tindel, 2013. "Smooth Density for Some Nilpotent Rough Differential Equations," Journal of Theoretical Probability, Springer, vol. 26(3), pages 722-749, September.
    7. Sin, Myong-Guk & Ri, Kyong-Il & Kim, Kyong-Hui, 2022. "Existence and uniqueness of solution for coupled fractional mean-field forward–backward stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 190(C).
    8. Boufoussi, Brahim & Hajji, Salah, 2012. "Neutral stochastic functional differential equations driven by a fractional Brownian motion in a Hilbert space," Statistics & Probability Letters, Elsevier, vol. 82(8), pages 1549-1558.
    9. Peter Kloeden & Andreas Neuenkirch & Raffaella Pavani, 2011. "Multilevel Monte Carlo for stochastic differential equations with additive fractional noise," Annals of Operations Research, Springer, vol. 189(1), pages 255-276, September.
    10. Fan, Xiliang & Yu, Ting & Yuan, Chenggui, 2023. "Asymptotic behaviors for distribution dependent SDEs driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 383-415.
    11. Shevchenko, Georgiy & Shalaiko, Taras, 2013. "Malliavin regularity of solutions to mixed stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2638-2646.
    12. Baudoin, Fabrice & Ouyang, Cheng, 2011. "Small-time kernel expansion for solutions of stochastic differential equations driven by fractional Brownian motions," Stochastic Processes and their Applications, Elsevier, vol. 121(4), pages 759-792, April.
    13. Nualart, Eulalia & Viens, Frederi, 2009. "The fractional stochastic heat equation on the circle: Time regularity and potential theory," Stochastic Processes and their Applications, Elsevier, vol. 119(5), pages 1505-1540, May.
    14. Armstrong, John & Ionescu, Andrei, 2024. "Itô stochastic differentials," Stochastic Processes and their Applications, Elsevier, vol. 171(C).
    15. Xiliang Fan, 2019. "Derivative Formulas and Applications for Degenerate Stochastic Differential Equations with Fractional Noises," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1360-1381, September.
    16. Zhang, Yinghan & Yang, Xiaoyuan, 2015. "Fractional stochastic Volterra equation perturbed by fractional Brownian motion," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 20-36.
    17. Esteban-Bravo, Mercedes & Vidal-Sanz, Jose M., 2007. "Computing continuous-time growth models with boundary conditions via wavelets," Journal of Economic Dynamics and Control, Elsevier, vol. 31(11), pages 3614-3643, November.
    18. Nourdin, Ivan & Peccati, Giovanni & Viens, Frederi G., 2014. "Comparison inequalities on Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1566-1581.
    19. Deya, Aurélien & Tindel, Samy, 2011. "Rough Volterra equations 2: Convolutional generalized integrals," Stochastic Processes and their Applications, Elsevier, vol. 121(8), pages 1864-1899, August.
    20. Eric Djeutcha & Didier Alain Njamen Njomen & Louis-Aimé Fono, 2019. "Solving Arbitrage Problem on the Financial Market Under the Mixed Fractional Brownian Motion With Hurst Parameter H ∈]1/2,3/4[," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(1), pages 76-92, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:122:y:2012:i:2:p:466-497. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.