IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v175y2024ics0304414924000954.html
   My bibliography  Save this article

Asymptotic expansion of the quadratic variation of fractional stochastic differential equation

Author

Listed:
  • Yamagishi, Hayate
  • Yoshida, Nakahiro

Abstract

We derive an asymptotic expansion for the quadratic variation of a stochastic process satisfying a stochastic differential equation driven by a fractional Brownian motion, based on the theory of asymptotic expansion of Skorohod integrals converging to a mixed normal limit. In order to apply the general theory, it is necessary to estimate functionals that are a randomly weighted sum of products of multiple integrals of the fractional Brownian motion, in expanding the quadratic variation and identifying the limit random symbols. To overcome the difficulty, we utilized the theory of exponents of functionals, which was introduced by the authors in Yamagishi and Yoshida (2023).

Suggested Citation

  • Yamagishi, Hayate & Yoshida, Nakahiro, 2024. "Asymptotic expansion of the quadratic variation of fractional stochastic differential equation," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
  • Handle: RePEc:eee:spapps:v:175:y:2024:i:c:s0304414924000954
    DOI: 10.1016/j.spa.2024.104389
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304414924000954
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spa.2024.104389?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yamagishi, Hayate & Yoshida, Nakahiro, 2023. "Order estimate of functionals related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 490-543.
    2. Yuji Sakamoto & Nakahiro Yoshida, 2009. "Third-order asymptotic expansion of M-estimators for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 629-661, September.
    3. Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017. "Edgeworth expansion for the pre-averaging estimator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
    4. Yoshida, Nakahiro, 2013. "Martingale expansion in mixed normal limit," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 887-933.
    5. Nualart, David & Saussereau, Bruno, 2009. "Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 391-409, February.
    6. Masayuki Uchida & Nakahiro Yoshida, 2004. "Information Criteria for Small Diffusions via the Theory of Malliavin–Watanabe," Statistical Inference for Stochastic Processes, Springer, vol. 7(1), pages 35-67, March.
    7. Yuji Sakamoto & Nakahiro Yoshida, 2004. "Asymptotic expansion formulas for functionals of ε-Markov processes with a mixing property," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 56(3), pages 545-597, September.
    8. Masayuki Uchida & Nakahiro Yoshida, 2001. "Information Criteria in Model Selection for Mixing Processes," Statistical Inference for Stochastic Processes, Springer, vol. 4(1), pages 73-98, January.
    9. Tudor, Ciprian A. & Yoshida, Nakahiro, 2019. "Asymptotic expansion for vector-valued sequences of random variables with focus on Wiener chaos," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3499-3526.
    10. Ciprian A. Tudor & Nakahiro Yoshida, 2020. "Asymptotic expansion of the quadratic variation of a mixed fractional Brownian motion," Statistical Inference for Stochastic Processes, Springer, vol. 23(2), pages 435-463, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yoshida, Nakahiro, 2023. "Asymptotic expansion and estimates of Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 157(C), pages 176-248.
    2. Tudor, Ciprian A. & Yoshida, Nakahiro, 2023. "High order asymptotic expansion for Wiener functionals," Stochastic Processes and their Applications, Elsevier, vol. 164(C), pages 443-492.
    3. Yamagishi, Hayate & Yoshida, Nakahiro, 2023. "Order estimate of functionals related to fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 161(C), pages 490-543.
    4. Masayuki Uchida, 2010. "Contrast-based information criterion for ergodic diffusion processes from discrete observations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 161-187, February.
    5. Yuji Sakamoto & Nakahiro Yoshida, 2009. "Third-order asymptotic expansion of M-estimators for diffusion processes," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 61(3), pages 629-661, September.
    6. Masuda, Hiroki, 2007. "Ergodicity and exponential [beta]-mixing bounds for multidimensional diffusions with jumps," Stochastic Processes and their Applications, Elsevier, vol. 117(1), pages 35-56, January.
    7. Uchida, Masayuki, 2008. "Approximate martingale estimating functions for stochastic differential equations with small noises," Stochastic Processes and their Applications, Elsevier, vol. 118(9), pages 1706-1721, September.
    8. Nakahiro Yoshida, 2011. "Polynomial type large deviation inequalities and quasi-likelihood analysis for stochastic differential equations," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 431-479, June.
    9. Yoshida, Nakahiro, 2013. "Martingale expansion in mixed normal limit," Stochastic Processes and their Applications, Elsevier, vol. 123(3), pages 887-933.
    10. Yusuke Shimizu, 2017. "Moment convergence of regularized least-squares estimator for linear regression model," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 69(5), pages 1141-1154, October.
    11. Masayuki Uchida & Nakahiro Yoshida, 2014. "Adaptive Bayes type estimators of ergodic diffusion processes from discrete observations," Statistical Inference for Stochastic Processes, Springer, vol. 17(2), pages 181-219, July.
    12. Long, Hongwei & Ma, Chunhua & Shimizu, Yasutaka, 2017. "Least squares estimators for stochastic differential equations driven by small Lévy noises," Stochastic Processes and their Applications, Elsevier, vol. 127(5), pages 1475-1495.
    13. Mark Podolskij & Bezirgen Veliyev & Nakahiro Yoshida, 2018. "Edgeworth expansion for Euler approximation of continuous diffusion processes," CREATES Research Papers 2018-28, Department of Economics and Business Economics, Aarhus University.
    14. De Gregorio, A. & Iacus, S.M., 2013. "On a family of test statistics for discretely observed diffusion processes," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 292-316.
    15. León, Jorge A. & Liu, Yanghui & Tindel, Samy, 2024. "Euler scheme for SDEs driven by fractional Brownian motions: Malliavin differentiability and uniform upper-bound estimates," Stochastic Processes and their Applications, Elsevier, vol. 175(C).
    16. Podolskij, Mark & Veliyev, Bezirgen & Yoshida, Nakahiro, 2017. "Edgeworth expansion for the pre-averaging estimator," Stochastic Processes and their Applications, Elsevier, vol. 127(11), pages 3558-3595.
    17. Quer-Sardanyons, Lluís & Tindel, Samy, 2012. "Pathwise definition of second-order SDEs," Stochastic Processes and their Applications, Elsevier, vol. 122(2), pages 466-497.
    18. Fan, XiLiang, 2015. "Logarithmic Sobolev inequalities for fractional diffusion," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 165-172.
    19. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    20. Bondarenko, Valeria & Bondarenko, Victor & Truskovskyi, Kyryl, 2017. "Forecasting of time data with using fractional Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 97(C), pages 44-50.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:175:y:2024:i:c:s0304414924000954. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.