IDEAS home Printed from https://ideas.repec.org/a/ibn/jmrjnl/v11y2019i1p76.html
   My bibliography  Save this article

Solving Arbitrage Problem on the Financial Market Under the Mixed Fractional Brownian Motion With Hurst Parameter H ∈]1/2,3/4[

Author

Listed:
  • Eric Djeutcha
  • Didier Alain Njamen Njomen
  • Louis-Aimé Fono

Abstract

This study deals with the arbitrage problem on the financial market when the underlying asset follows a mixed fractional Brownian motion. We prove the existence and uniqueness theorem for the mixed geometric fractional Brownian motion equation. The semi-martingale approximation approach to mixed fractional Brownian motion is used to eliminate the arbitrage opportunities.

Suggested Citation

  • Eric Djeutcha & Didier Alain Njamen Njomen & Louis-Aimé Fono, 2019. "Solving Arbitrage Problem on the Financial Market Under the Mixed Fractional Brownian Motion With Hurst Parameter H ∈]1/2,3/4[," Journal of Mathematics Research, Canadian Center of Science and Education, vol. 11(1), pages 76-92, February.
  • Handle: RePEc:ibn:jmrjnl:v:11:y:2019:i:1:p:76
    as

    Download full text from publisher

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/download/0/0/38304/38962
    Download Restriction: no

    File URL: http://www.ccsenet.org/journal/index.php/jmr/article/view/0/38304
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nualart, David & Saussereau, Bruno, 2009. "Malliavin calculus for stochastic differential equations driven by a fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 119(2), pages 391-409, February.
    2. Cipian Necula, 2008. "Option Pricing in a Fractional Brownian Motion Environment," Advances in Economic and Financial Research - DOFIN Working Paper Series 2, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    3. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    4. Nguyen Tien, Dung, 2013. "The existence of a positive solution for a generalized delay logistic equation with multifractional noise," Statistics & Probability Letters, Elsevier, vol. 83(4), pages 1240-1246.
    5. Nourdin, Ivan & Simon, Thomas, 2006. "On the absolute continuity of one-dimensional SDEs driven by a fractional Brownian motion," Statistics & Probability Letters, Elsevier, vol. 76(9), pages 907-912, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djeutcha, Eric & Kamdem, Jules Sadefo, 2021. "Local and implied volatilities with the mixed-modified-fractional-Dupire model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    2. Eric Djeutcha & Jules Sadefo Kamdem, 2024. "Pricing for a vulnerable bull spread options using a mixed modified fractional Hull–White–Vasicek model," Annals of Operations Research, Springer, vol. 334(1), pages 101-131, March.
    3. Eric Djeutcha & Jules Sadefo-Kamdem & Louis Aimé Fono, 2021. "Mixed Modified Fractional Merton model of the bear spread Basket put option using the multidimensional Mellin transform," Working Papers hal-03330043, HAL.
    4. Amit K. Sinha, 2021. "The reliability of geometric Brownian motion forecasts of S&P500 index values," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(8), pages 1444-1462, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vasile Brătian & Ana-Maria Acu & Camelia Oprean-Stan & Emil Dinga & Gabriela-Mariana Ionescu, 2021. "Efficient or Fractal Market Hypothesis? A Stock Indexes Modelling Using Geometric Brownian Motion and Geometric Fractional Brownian Motion," Mathematics, MDPI, vol. 9(22), pages 1-20, November.
    2. Fan, XiLiang, 2015. "Logarithmic Sobolev inequalities for fractional diffusion," Statistics & Probability Letters, Elsevier, vol. 106(C), pages 165-172.
    3. Jean-Philippe Aguilar & Jan Korbel, 2019. "Simple Formulas for Pricing and Hedging European Options in the Finite Moment Log-Stable Model," Risks, MDPI, vol. 7(2), pages 1-14, April.
    4. Foad Shokrollahi, 2016. "Subdiffusive fractional Brownian motion regime for pricing currency options under transaction costs," Papers 1612.06665, arXiv.org, revised Aug 2017.
    5. Axel A. Araneda, 2019. "The fractional and mixed-fractional CEV model," Papers 1903.05747, arXiv.org, revised Jun 2019.
    6. Wang, Wei & Cai, Guanghui & Tao, Xiangxing, 2021. "Pricing geometric asian power options in the sub-fractional brownian motion environment," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    7. Xiliang Fan, 2019. "Derivative Formulas and Applications for Degenerate Stochastic Differential Equations with Fractional Noises," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1360-1381, September.
    8. Stoyan V. Stoyanov & Svetlozar T. Rachev & Stefan Mittnik & Frank J. Fabozzi, 2019. "Pricing Derivatives In Hermite Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(06), pages 1-27, September.
    9. Axel A. Araneda, 2021. "Price modelling under generalized fractional Brownian motion," Papers 2108.12042, arXiv.org, revised Nov 2023.
    10. Jian Pan & Xiangying Zhou, 2017. "Pricing for options in a mixed fractional Hull–White interest rate model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-15, March.
    11. Nourdin, Ivan & Peccati, Giovanni & Viens, Frederi G., 2014. "Comparison inequalities on Wiener space," Stochastic Processes and their Applications, Elsevier, vol. 124(4), pages 1566-1581.
    12. Panhong Cheng & Zhihong Xu & Zexing Dai, 2023. "Valuation of vulnerable options with stochastic corporate liabilities in a mixed fractional Brownian motion environment," Mathematics and Financial Economics, Springer, volume 17, number 3, December.
    13. Ciprian Necula, 2008. "A Framework for Derivative Pricing in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 19, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    14. Paula Morales-Bañuelos & Nelson Muriel & Guillermo Fernández-Anaya, 2022. "A Modified Black-Scholes-Merton Model for Option Pricing," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    15. Yuecai Han & Xudong Zheng, 2022. "Approximate Pricing of Derivatives Under Fractional Stochastic Volatility Model," Papers 2210.15453, arXiv.org.
    16. Fajardo, J. & Cajueiro, D. O., 2003. "Volatility Estimation and Option Pricing with Fractional Brownian Motion," Finance Lab Working Papers flwp_53, Finance Lab, Insper Instituto de Ensino e Pesquisa.
    17. Shevchenko, Georgiy & Shalaiko, Taras, 2013. "Malliavin regularity of solutions to mixed stochastic differential equations," Statistics & Probability Letters, Elsevier, vol. 83(12), pages 2638-2646.
    18. Ciprian Necula, 2008. "Pricing European and Barrier Options in the Fractional Black-Scholes Market," Advances in Economic and Financial Research - DOFIN Working Paper Series 20, Bucharest University of Economics, Center for Advanced Research in Finance and Banking - CARFIB.
    19. Stoyan V. Stoyanov & Yong Shin Kim & Svetlozar T. Rachev & Frank J. Fabozzi, 2017. "Option pricing for Informed Traders," Papers 1711.09445, arXiv.org.
    20. Foad Shokrollahi, 2017. "The evaluation of geometric Asian power options under time changed mixed fractional Brownian motion," Papers 1712.05254, arXiv.org.

    More about this item

    Keywords

    mixed fractional process; asset pricing; Gaussian process;
    All these keywords.

    JEL classification:

    • R00 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - General - - - General
    • Z0 - Other Special Topics - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ibn:jmrjnl:v:11:y:2019:i:1:p:76. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Canadian Center of Science and Education (email available below). General contact details of provider: https://edirc.repec.org/data/cepflch.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.