IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1209.5953.html
   My bibliography  Save this paper

Optimization problem and mean variance hedging on defaultable claims

Author

Listed:
  • Stephane Goutte
  • Armand Ngoupeyou

Abstract

We study the pricing and the hedging of claim {\psi} which depends on the default times of two firms A and B. In fact, we assume that, in the market, we can not buy or sell any defaultable bond of the firm B but we can only trade defaultable bond of the firm A. Our aim is then to find the best price and hedging of {\psi} using only bond of the firm A. Hence, we solve this problem in two cases: firstly in a Markov framework using indifference price and solving a system of Hamilton-Jacobi-Bellman equations, secondly, in a more general framework, using the mean variance hedging approach and solving backward stochastic differential equations (BSDE).

Suggested Citation

  • Stephane Goutte & Armand Ngoupeyou, 2012. "Optimization problem and mean variance hedging on defaultable claims," Papers 1209.5953, arXiv.org.
  • Handle: RePEc:arx:papers:1209.5953
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1209.5953
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. St'ephane Goutte & Nadia Oudjane & Francesco Russo, 2013. "Variance optimal hedging for continuous time additive processes and applications," Papers 1302.1965, arXiv.org.
    2. Alev{s} v{C}ern'y & Jan Kallsen, 2007. "On the Structure of General Mean-Variance Hedging Strategies," Papers 0708.1715, arXiv.org, revised Jul 2017.
    3. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    4. Mark Davis & Sébastien Lleo, 2010. "Risk Sensitive Investment Management with Affine Processes: A Viscosity Approach," World Scientific Book Chapters, in: Masaaki Kijima & Chiaki Hara & Keiichi Tanaka & Yukio Muromachi (ed.), Recent Advances In Financial Engineering 2009, chapter 1, pages 1-41, World Scientific Publishing Co. Pte. Ltd..
    5. Jean-Paul Laurent & Huyen Pham, 1999. "Dynamic programming and mean-variance hedging," Post-Print hal-03675953, HAL.
    6. Takuji Arai, 2005. "An extension of mean-variance hedging to the discontinuous case," Finance and Stochastics, Springer, vol. 9(1), pages 129-139, January.
    7. El Karoui, Nicole & Jeanblanc, Monique & Jiao, Ying, 2010. "What happens after a default: The conditional density approach," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1011-1032, July.
    8. Richard Rouge & Nicole El Karoui, 2000. "Pricing Via Utility Maximization and Entropy," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 259-276, April.
    9. Martin Schweizer & Christophe Stricker & Freddy Delbaen & Pascale Monat & Walter Schachermayer, 1997. "Weighted norm inequalities and hedging in incomplete markets," Finance and Stochastics, Springer, vol. 1(3), pages 181-227.
    10. Christian Gourieroux & Jean Paul Laurent & Huyên Pham, 1998. "Mean‐Variance Hedging and Numéraire," Mathematical Finance, Wiley Blackwell, vol. 8(3), pages 179-200, July.
    11. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goutte, Stéphane & Ngoupeyou, Armand, 2015. "The use of BSDEs to characterize the mean–variance hedging problem and the variance optimal martingale measure for defaultable claims," Stochastic Processes and their Applications, Elsevier, vol. 125(4), pages 1323-1351.
    2. Michael Mania & Revaz Tevzadze, 2008. "Backward Stochastic PDEs Related to the Utility Maximization Problem," ICER Working Papers - Applied Mathematics Series 07-2008, ICER - International Centre for Economic Research.
    3. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, October.
    4. Wanyang Dai, 2014. "Mean-variance hedging based on an incomplete market with external risk factors of non-Gaussian OU processes," Papers 1410.0991, arXiv.org, revised Aug 2015.
    5. Vicky Henderson & David Hobson & Sam Howison & Tino Kluge, 2003. "A Comparison of q-optimal Option Prices in a Stochastic Volatility Model with Correlation," OFRC Working Papers Series 2003mf02, Oxford Financial Research Centre.
    6. M. Mania & R. Tevzadze, 2003. "Backward Stochastic PDE and Imperfect Hedging," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 6(07), pages 663-692.
    7. David Hobson, 2004. "STOCHASTIC VOLATILITY MODELS, CORRELATION, AND THE q‐OPTIMAL MEASURE," Mathematical Finance, Wiley Blackwell, vol. 14(4), pages 537-556, October.
    8. Leitner, Johannes, 2000. "Mean-Variance Efficiency and Intertemporal Price for Risk," CoFE Discussion Papers 00/35, University of Konstanz, Center of Finance and Econometrics (CoFE).
    9. Kohlmann, Michael & Tang, Shanjian, 2000. "Global Adapted Solution of One-Dimensional Backward Stochastic Riccati Equations, with Application to the Mean-Variance Hedging," CoFE Discussion Papers 00/26, University of Konstanz, Center of Finance and Econometrics (CoFE).
    10. Takuji Arai & Yuto Imai, 2017. "A closed-form representation of mean-variance hedging for additive processes via Malliavin calculus," Papers 1702.07556, arXiv.org, revised Nov 2017.
    11. Samuel Drapeau & Yunbo Zhang, 2019. "Pricing and Hedging Performance on Pegged FX Markets Based on a Regime Switching Model," Papers 1910.08344, arXiv.org, revised May 2020.
    12. Vicky Henderson & David Hobson & Sam Howison & Tino Kluge, 2005. "A Comparison of Option Prices Under Different Pricing Measures in a Stochastic Volatility Model with Correlation," Review of Derivatives Research, Springer, vol. 8(1), pages 5-25, June.
    13. Leitner Johannes, 2005. "Optimal portfolios with expected loss constraints and shortfall risk optimal martingale measures," Statistics & Risk Modeling, De Gruyter, vol. 23(1/2005), pages 49-66, January.
    14. Regis Houssou & Olivier Besson, 2010. "Indifference of Defaultable Bonds with Stochastic Intensity models," Papers 1003.4118, arXiv.org.
    15. Mark P. Owen & Gordan Žitković, 2009. "Optimal Investment With An Unbounded Random Endowment And Utility‐Based Pricing," Mathematical Finance, Wiley Blackwell, vol. 19(1), pages 129-159, January.
    16. Scott Robertson, 2012. "Pricing for Large Positions in Contingent Claims," Papers 1202.4007, arXiv.org, revised Dec 2013.
    17. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4), pages 311-332, October.
    18. Alev{s} v{C}ern'y & Jan Kallsen, 2007. "On the Structure of General Mean-Variance Hedging Strategies," Papers 0708.1715, arXiv.org, revised Jul 2017.
    19. Liao Wang & Johannes Wissel, 2013. "Mean-variance hedging with oil futures," Finance and Stochastics, Springer, vol. 17(4), pages 641-683, October.
    20. Michail Anthropelos & Nikolaos E. Frangos & Stylianos Z. Xanthopoulos & Athanasios N. Yannacopoulos, 2008. "On contingent claims pricing in incomplete markets: A risk sharing approach," Papers 0809.4781, arXiv.org, revised Feb 2012.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1209.5953. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.