IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i7p1011-1032.html
   My bibliography  Save this article

What happens after a default: The conditional density approach

Author

Listed:
  • El Karoui, Nicole
  • Jeanblanc, Monique
  • Jiao, Ying

Abstract

We present a general model for default times, making precise the role of the intensity process, and showing that this process allows for a knowledge of the conditional distribution of the default only "before the default". This lack of information is crucial while working in a multi-default setting. In a single default case, the knowledge of the intensity process does not allow us to compute the price of defaultable claims, except in the case where the immersion property is satisfied. We propose in this paper a density approach for default times. The density process will give a full characterization of the links between the default time and the reference filtration, in particular "after the default time". We also investigate the description of martingales in the full filtration in terms of martingales in the reference filtration, and the impact of Girsanov transformation on the density and intensity processes, and on the immersion property.

Suggested Citation

  • El Karoui, Nicole & Jeanblanc, Monique & Jiao, Ying, 2010. "What happens after a default: The conditional density approach," Stochastic Processes and their Applications, Elsevier, vol. 120(7), pages 1011-1032, July.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:7:p:1011-1032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00042-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. J. Elliott & M. Jeanblanc & M. Yor, 2000. "On Models of Default Risk," Mathematical Finance, Wiley Blackwell, vol. 10(2), pages 179-195, April.
    2. D. C. Brody & L. P. Hughston, 2002. "Entropy and information in the interest rate term structure," Quantitative Finance, Taylor & Francis Journals, vol. 2(1), pages 70-80.
    3. Axel Grorud & Monique Pontier, 2001. "Asymmetrical Information And Incomplete Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(02), pages 285-302.
    4. Jeanblanc, Monique & Le Cam, Yann, 2009. "Progressive enlargement of filtrations with initial times," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2523-2543, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fontana, Claudio, 2018. "The strong predictable representation property in initially enlarged filtrations under the density hypothesis," Stochastic Processes and their Applications, Elsevier, vol. 128(3), pages 1007-1033.
    2. Aksamit, Anna & Jeanblanc, Monique & Rutkowski, Marek, 2019. "Integral representations of martingales for progressive enlargements of filtrations," Stochastic Processes and their Applications, Elsevier, vol. 129(4), pages 1229-1258.
    3. Jeanblanc, Monique & Le Cam, Yann, 2009. "Progressive enlargement of filtrations with initial times," Stochastic Processes and their Applications, Elsevier, vol. 119(8), pages 2523-2543, August.
    4. Younes Kchia & Martin Larsson, 2011. "Credit contagion and risk management with multiple non-ordered defaults," Papers 1104.5272, arXiv.org, revised Jun 2011.
    5. Claudia Ceci & Katia Colaneri & Alessandra Cretarola, 2018. "Indifference pricing of pure endowments via BSDEs under partial information," Papers 1804.00223, arXiv.org, revised Jul 2020.
    6. Tomasz Bielecki & Monique Jeanblanc & Marek Rutkowski, 2011. "Hedging of a credit default swaption in the CIR default intensity model," Finance and Stochastics, Springer, vol. 15(3), pages 541-572, September.
    7. Masahiko Egami & Rusudan Kevkhishvili, 2020. "Time reversal and last passage time of diffusions with applications to credit risk management," Finance and Stochastics, Springer, vol. 24(3), pages 795-825, July.
    8. Nicola Bruti-Liberati & Christina Nikitopoulos-Sklibosios & Eckhard Platen & Erik Schlögl, 2009. "Alternative Defaultable Term Structure Models," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 1-31, March.
    9. Beatrice Acciaio & Claudio Fontana & Constantinos Kardaras, 2014. "Arbitrage of the first kind and filtration enlargements in semimartingale financial models," Papers 1401.7198, arXiv.org, revised May 2015.
    10. Ying Jiao, 2009. "Multiple defaults and contagion risks," Working Papers hal-00441500, HAL.
    11. Junchi Ma & Mobolaji Ogunsolu & Jinniao Qiu & Ayşe Deniz Sezer, 2023. "Credit risk pricing in a consumption‐based equilibrium framework with incomplete accounting information," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 666-708, July.
    12. Blanchet-Scalliet, Christophette & El Karoui, Nicole & Martellini, Lionel, 2005. "Dynamic asset pricing theory with uncertain time-horizon," Journal of Economic Dynamics and Control, Elsevier, vol. 29(10), pages 1737-1764, October.
    13. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    14. Huayuan Dong & Paolo Guasoni & Eberhard Mayerhofer, 2023. "Rogue traders," Finance and Stochastics, Springer, vol. 27(3), pages 539-603, July.
    15. José Manuel Corcuera & Giulia Nunno & José Fajardo, 2019. "Kyle equilibrium under random price pressure," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 42(1), pages 77-101, June.
    16. Ying Jiao, 2009. "Multiple defaults and contagion risks," Papers 0912.3132, arXiv.org.
    17. Ashkan Nikeghbali & Eckhard Platen, 2013. "A reading guide for last passage times with financial applications in view," Finance and Stochastics, Springer, vol. 17(3), pages 615-640, July.
    18. Salvatore Federico & Paul Gassiat & Fausto Gozzi, 2015. "Utility maximization with current utility on the wealth: regularity of solutions to the HJB equation," Finance and Stochastics, Springer, vol. 19(2), pages 415-448, April.
    19. Delia Coculescu & Gabriele Visentin, 2017. "A default system with overspilling contagion," Papers 1709.09255, arXiv.org, revised May 2023.
    20. Peter Carr & Vadim Linetsky, 2006. "A jump to default extended CEV model: an application of Bessel processes," Finance and Stochastics, Springer, vol. 10(3), pages 303-330, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:7:p:1011-1032. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.