IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v116y2006i12p1743-1769.html
   My bibliography  Save this article

Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps

Author

Listed:
  • Ishikawa, Yasushi
  • Kunita, Hiroshi

Abstract

We study the existence and smoothness of densities of laws of solutions of a canonical stochastic differential equation (SDE) driven by a Lévy process through the Malliavin calculus on the Wiener-Poisson space. Our assumption needed for the equation is very simple, since we are considering the canonical SDE. Assuming that the Lévy process is nondegenerate, we prove the existence of a smooth density in the case where the coefficients of the equation are nondegenerate. Our main result is stated in Theorem 1.1.

Suggested Citation

  • Ishikawa, Yasushi & Kunita, Hiroshi, 2006. "Malliavin calculus on the Wiener-Poisson space and its application to canonical SDE with jumps," Stochastic Processes and their Applications, Elsevier, vol. 116(12), pages 1743-1769, December.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:12:p:1743-1769
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00061-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masafumi Hayashi, 2010. "Coefficients of Asymptotic Expansions of SDE with Jumps," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 17(4), pages 373-389, December.
    2. Ishikawa, Yasushi & Kunita, Hiroshi & Tsuchiya, Masaaki, 2018. "Smooth density and its short time estimate for jump process determined by SDE," Stochastic Processes and their Applications, Elsevier, vol. 128(9), pages 3181-3219.
    3. Xin Guo & Robert A. Jarrow & Yan Zeng, 2009. "Credit Risk Models with Incomplete Information," Mathematics of Operations Research, INFORMS, vol. 34(2), pages 320-332, May.
    4. Andrey Borisov & Andrey Gorshenin, 2022. "Identification of Continuous-Discrete Hidden Markov Models with Multiplicative Observation Noise," Mathematics, MDPI, vol. 10(17), pages 1-20, August.
    5. Andrey Borisov & Alexey Bosov & Gregory Miller & Igor Sokolov, 2021. "Partial Diffusion Markov Model of Heterogeneous TCP Link: Optimization with Incomplete Information," Mathematics, MDPI, vol. 9(14), pages 1-31, July.
    6. Atsushi Takeuchi, 2010. "Bismut–Elworthy–Li-Type Formulae for Stochastic Differential Equations with Jumps," Journal of Theoretical Probability, Springer, vol. 23(2), pages 576-604, June.
    7. Kunita, Hiroshi, 2010. "Itô's stochastic calculus: Its surprising power for applications," Stochastic Processes and their Applications, Elsevier, vol. 120(5), pages 622-652, May.
    8. Alexander Steinicke, 2016. "Functionals of a Lévy Process on Canonical and Generic Probability Spaces," Journal of Theoretical Probability, Springer, vol. 29(2), pages 443-458, June.
    9. Clément, Emmanuelle & Gloter, Arnaud, 2015. "Local Asymptotic Mixed Normality property for discretely observed stochastic differential equations driven by stable Lévy processes," Stochastic Processes and their Applications, Elsevier, vol. 125(6), pages 2316-2352.
    10. Schmisser, Émeline, 2014. "Non-parametric adaptive estimation of the drift for a jump diffusion process," Stochastic Processes and their Applications, Elsevier, vol. 124(1), pages 883-914.
    11. Zimo Hao & Xuhui Peng & Xicheng Zhang, 2021. "Hörmander’s Hypoelliptic Theorem for Nonlocal Operators," Journal of Theoretical Probability, Springer, vol. 34(4), pages 1870-1916, December.
    12. Goldys, Beniamin & Wu, Wei, 2019. "On a class of singular stochastic control problems driven by Lévy noise," Stochastic Processes and their Applications, Elsevier, vol. 129(9), pages 3174-3206.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:12:p:1743-1769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.