IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v120y2010i12p2302-2330.html
   My bibliography  Save this article

Long strange segments, ruin probabilities and the effect of memory on moving average processes

Author

Listed:
  • Ghosh, Souvik
  • Samorodnitsky, Gennady

Abstract

We obtain the rate of growth of long strange segments and the rate of decay of infinite horizon ruin probabilities for a class of infinite moving average processes with exponentially light tails. The rates are computed explicitly. We show that the rates are very similar to those of an i.i.d. process as long as the moving average coefficients decay fast enough. If they do not, then the rates are significantly different. This demonstrates the change in the length of memory in a moving average process associated with certain changes in the rate of decay of the coefficients.

Suggested Citation

  • Ghosh, Souvik & Samorodnitsky, Gennady, 2010. "Long strange segments, ruin probabilities and the effect of memory on moving average processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2302-2330, December.
  • Handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2302-2330
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(10)00190-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vaggelatou, Eutichia, 2003. "On the length of the longest run in a multi-state Markov chain," Statistics & Probability Letters, Elsevier, vol. 62(3), pages 211-221, April.
    2. Hüsler, J. & Piterbarg, V., 2004. "On the ruin probability for physical fractional Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 113(2), pages 315-332, October.
    3. Promislow, S. David, 1991. "The probability of ruin in a process with dependent increments," Insurance: Mathematics and Economics, Elsevier, vol. 10(2), pages 99-107, July.
    4. Nyrhinen, Harri, 1995. "On the typical level crossing time and path," Stochastic Processes and their Applications, Elsevier, vol. 58(1), pages 121-137, July.
    5. Hüsler, Jürg & Piterbarg, Vladimir, 2008. "A limit theorem for the time of ruin in a Gaussian ruin problem," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2014-2021, November.
    6. T. Rachev, Svetlozar & Samorodnitsky, Gennady, 2001. "Long strange segments in a long-range-dependent moving average," Stochastic Processes and their Applications, Elsevier, vol. 93(1), pages 119-148, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Barbe, Ph. & McCormick, W.P., 2010. "An extension of a logarithmic form of Cramér's ruin theorem to some FARIMA and related processes," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 801-828, June.
    2. Krzysztof Dȩbicki & Peng Liu & Zbigniew Michna, 2020. "Sojourn Times of Gaussian Processes with Trend," Journal of Theoretical Probability, Springer, vol. 33(4), pages 2119-2166, December.
    3. Serkan Eryilmaz, 2005. "On the distribution and expectation of success runs in nonhomogeneous Markov dependent trials," Statistical Papers, Springer, vol. 46(1), pages 117-128, January.
    4. Albrecher Hansjörg & Kantor Josef, 2002. "Simulation of ruin probabilities for risk processes of Markovian type," Monte Carlo Methods and Applications, De Gruyter, vol. 8(2), pages 111-128, December.
    5. Phung Duy Quang, 2017. "Upper Bounds for Ruin Probability in a Controlled Risk Process under Rates of Interest with Homogenous Markov Chains," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(3), pages 1-4.
    6. Bai, Long & Luo, Li, 2017. "Parisian ruin of the Brownian motion risk model with constant force of interest," Statistics & Probability Letters, Elsevier, vol. 120(C), pages 34-44.
    7. Fasen, Vicky & Roy, Parthanil, 2016. "Stable random fields, point processes and large deviations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 832-856.
    8. Muller, Alfred & Pflug, Georg, 2001. "Asymptotic ruin probabilities for risk processes with dependent increments," Insurance: Mathematics and Economics, Elsevier, vol. 28(3), pages 381-392, June.
    9. Long Bai & Peng Liu, 2019. "Drawdown and Drawup for Fractional Brownian Motion with Trend," Journal of Theoretical Probability, Springer, vol. 32(3), pages 1581-1612, September.
    10. Zhang, Zhiqiang & Yuen, Kam C. & Li, Wai Keung, 2007. "A time-series risk model with constant interest for dependent classes of business," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 32-40, July.
    11. Christ, Ralf & Steinebach, Josef, 1995. "Estimating the adjustment coefficient in an ARMA(p, q) risk model," Insurance: Mathematics and Economics, Elsevier, vol. 17(2), pages 149-161, October.
    12. De[combining cedilla]bicki, Krzysztof & Kisowski, Pawel, 2008. "Asymptotics of supremum distribution of [alpha](t)-locally stationary Gaussian processes," Stochastic Processes and their Applications, Elsevier, vol. 118(11), pages 2022-2037, November.
    13. Harri Nyrhinen, 2015. "On real growth and run-off companies in insurance ruin theory," Papers 1511.01763, arXiv.org.
    14. Sun Wei & Rachev Svetlozar & Stoyanov Stoyan V. & Fabozzi Frank J., 2008. "Multivariate Skewed Student's t Copula in the Analysis of Nonlinear and Asymmetric Dependence in the German Equity Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-37, May.
    15. EryIlmaz, Serkan, 2008. "Distribution of runs in a sequence of exchangeable multi-state trials," Statistics & Probability Letters, Elsevier, vol. 78(12), pages 1505-1513, September.
    16. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    17. Bisewski, Krzysztof & Dȩbicki, Krzysztof & Kriukov, Nikolai, 2023. "Simultaneous ruin probability for multivariate Gaussian risk model," Stochastic Processes and their Applications, Elsevier, vol. 160(C), pages 386-408.
    18. Ji, Lanpeng & Peng, Xiaofan, 2023. "Extreme value theory for a sequence of suprema of a class of Gaussian processes with trend," Stochastic Processes and their Applications, Elsevier, vol. 158(C), pages 418-452.
    19. McElroy, Tucker & Jach, Agnieszka, 2012. "Tail index estimation in the presence of long-memory dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 266-282.
    20. Cossette, Hélène & Marceau, Étienne & Toureille, Florent, 2011. "Risk models based on time series for count random variables," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 19-28, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:120:y:2010:i:12:p:2302-2330. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.