Long strange segments in a long-range-dependent moving average
Author
Abstract
Suggested Citation
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sun, Wei & Rachev, Svetlozar & Fabozzi, Frank J., 2007. "Fractals or I.I.D.: Evidence of long-range dependence and heavy tailedness from modeling German equity market returns," Journal of Economics and Business, Elsevier, vol. 59(6), pages 575-595.
- Wei Sun & Svetlozar Rachev & Frank Fabozzi & Petko Kalev, 2008. "Fractals in trade duration: capturing long-range dependence and heavy tailedness in modeling trade duration," Annals of Finance, Springer, vol. 4(2), pages 217-241, March.
- McElroy, Tucker & Jach, Agnieszka, 2012. "Tail index estimation in the presence of long-memory dynamics," Computational Statistics & Data Analysis, Elsevier, vol. 56(2), pages 266-282.
- Ghosh, Souvik & Samorodnitsky, Gennady, 2010. "Long strange segments, ruin probabilities and the effect of memory on moving average processes," Stochastic Processes and their Applications, Elsevier, vol. 120(12), pages 2302-2330, December.
- Fasen, Vicky & Roy, Parthanil, 2016. "Stable random fields, point processes and large deviations," Stochastic Processes and their Applications, Elsevier, vol. 126(3), pages 832-856.
- Wei Sun & Svetlozar Rachev & Frank J. Fabozzi, 2009. "A New Approach for Using Lévy Processes for Determining High‐Frequency Value‐at‐Risk Predictions," European Financial Management, European Financial Management Association, vol. 15(2), pages 340-361, March.
- Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
- Wei Sun & Svetlozar Rachev & Frank Fabozzi & Petko Kalev, 2009. "A new approach to modeling co-movement of international equity markets: evidence of unconditional copula-based simulation of tail dependence," Empirical Economics, Springer, vol. 36(1), pages 201-229, February.
- Sun Wei & Rachev Svetlozar & Stoyanov Stoyan V. & Fabozzi Frank J., 2008. "Multivariate Skewed Student's t Copula in the Analysis of Nonlinear and Asymmetric Dependence in the German Equity Market," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 12(2), pages 1-37, May.
More about this item
Keywords
Long-range dependence Moving average process Large deviations Heavy tails Regular variation Extreme value distribution Applications in finance Insurance Telecommunications;Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:93:y:2001:i:1:p:119-148. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.