IDEAS home Printed from https://ideas.repec.org/a/spt/stecon/v6y2017i3f6_3_4.html
   My bibliography  Save this article

Upper Bounds for Ruin Probability in a Controlled Risk Process under Rates of Interest with Homogenous Markov Chains

Author

Listed:
  • Phung Duy Quang

Abstract

This paper explores recursive and integral equations for ruin probability of a controlled risk process under rates of interest with homogenous Markov chains. We assume that claim and rates of interest are homogenous Markov chains, take a countable number of non – negative values. Generalized Lundberg inequalities for ruin probability of this process are derived via a recursive technique. Recursive equations for finite time ruin probability and an integral equation for ultimate ruin probability are presented, from which corresponding probability inequalities and upper bounds are obtained. An illustrative numerical example is discussed.Mathematics Subject Classification: 62P05, 60G40, 12E05Keywords: ruin probability, homogenous Markov chain, controlled risk process

Suggested Citation

  • Phung Duy Quang, 2017. "Upper Bounds for Ruin Probability in a Controlled Risk Process under Rates of Interest with Homogenous Markov Chains," Journal of Statistical and Econometric Methods, SCIENPRESS Ltd, vol. 6(3), pages 1-4.
  • Handle: RePEc:spt:stecon:v:6:y:2017:i:3:f:6_3_4
    as

    Download full text from publisher

    File URL: http://www.scienpress.com/Upload/JSEM%2fVol%206_3_4.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, Jun & Dickson, David C.M., 2004. "Ruin probabilities with a Markov chain interest model," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 513-525, December.
    2. Promislow, S. David, 1991. "The probability of ruin in a process with dependent increments," Insurance: Mathematics and Economics, Elsevier, vol. 10(2), pages 99-107, July.
    3. Diasparra, Maikol & Romera, Rosario, 2009. "Inequalities for the ruin probability in a controlled discrete-time risk process," DES - Working Papers. Statistics and Econometrics. WS ws093513, Universidad Carlos III de Madrid. Departamento de Estadística.
    4. Sundt, Bjorn & Teugels, Jozef L., 1995. "Ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 16(1), pages 7-22, April.
    5. Sundt, Bjorn & Teugels, Jozef L., 1997. "The adjustment function in ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 19(2), pages 85-94, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diasparra, Maikol & Romera, Rosario, 2006. "Optimal policies for discrete time risk processes with a Markov chain investment model," DES - Working Papers. Statistics and Econometrics. WS ws062408, Universidad Carlos III de Madrid. Departamento de Estadística.
    2. Wu, Rong & Wang, Guojing & Zhang, Chunsheng, 2005. "On a joint distribution for the risk process with constant interest force," Insurance: Mathematics and Economics, Elsevier, vol. 36(3), pages 365-374, June.
    3. Yuen, Kam C. & Wang, Guojing & Wu, Rong, 2006. "On the renewal risk process with stochastic interest," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1496-1510, October.
    4. Konstantinides, Dimitrios & Tang, Qihe & Tsitsiashvili, Gurami, 2002. "Estimates for the ruin probability in the classical risk model with constant interest force in the presence of heavy tails," Insurance: Mathematics and Economics, Elsevier, vol. 31(3), pages 447-460, December.
    5. Wang, Rongming & Yang, Hailiang & Wang, Hanxing, 2004. "On the distribution of surplus immediately after ruin under interest force and subexponential claims," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 703-714, December.
    6. Rulliere, Didier & Loisel, Stephane, 2005. "The win-first probability under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 37(3), pages 421-442, December.
    7. Jasiulewicz, Helena, 2001. "Probability of ruin with variable premium rate in a Markovian environment," Insurance: Mathematics and Economics, Elsevier, vol. 29(2), pages 291-296, October.
    8. Cai, Jun & Dickson, David C. M., 2003. "Upper bounds for ultimate ruin probabilities in the Sparre Andersen model with interest," Insurance: Mathematics and Economics, Elsevier, vol. 32(1), pages 61-71, February.
    9. Yuen, Kam C. & Wang, Guojing & Li, Wai K., 2007. "The Gerber-Shiu expected discounted penalty function for risk processes with interest and a constant dividend barrier," Insurance: Mathematics and Economics, Elsevier, vol. 40(1), pages 104-112, January.
    10. Huang, Tao & Zhao, Ruiqing & Tang, Wansheng, 2009. "Risk model with fuzzy random individual claim amount," European Journal of Operational Research, Elsevier, vol. 192(3), pages 879-890, February.
    11. Paulsen, Jostein, 1998. "Ruin theory with compounding assets -- a survey," Insurance: Mathematics and Economics, Elsevier, vol. 22(1), pages 3-16, May.
    12. Leveille, Ghislain & Garrido, Jose, 2001. "Moments of compound renewal sums with discounted claims," Insurance: Mathematics and Economics, Elsevier, vol. 28(2), pages 217-231, April.
    13. Yang, Wenquan & Hu, Yijun, 2009. "Upper bounds for ultimate ruin probabilities in the Sparre Andersen risk model with interest and a nonlinear dividend barrier," Statistics & Probability Letters, Elsevier, vol. 79(1), pages 63-69, January.
    14. Jun Cai & Runhuan Feng & Gordon E. Willmot, 2009. "The Compound Poisson Surplus Model with Interest and Liquid Reserves: Analysis of the Gerber–Shiu Discounted Penalty Function," Methodology and Computing in Applied Probability, Springer, vol. 11(3), pages 401-423, September.
    15. Kalashnikov, Vladimir & Konstantinides, Dimitrios, 2000. "Ruin under interest force and subexponential claims: a simple treatment," Insurance: Mathematics and Economics, Elsevier, vol. 27(1), pages 145-149, August.
    16. Makroglou, Athena, 2000. "Computer treatment of the integro-differential equations of collective non-ruin; the finite time case," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 54(1), pages 99-112.
    17. Chunwei Wang & Chuancun Yin, 2009. "Dividend payments in the classical risk model under absolute ruin with debit interest," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 25(3), pages 247-262, May.
    18. Albrecher, Hansjorg & Teugels, Jozef L. & Tichy, Robert F., 2001. "On a gamma series expansion for the time-dependent probability of collective ruin," Insurance: Mathematics and Economics, Elsevier, vol. 29(3), pages 345-355, December.
    19. Albrecher Hansjörg & Kantor Josef, 2002. "Simulation of ruin probabilities for risk processes of Markovian type," Monte Carlo Methods and Applications, De Gruyter, vol. 8(2), pages 111-128, December.
    20. Sundt, Bjorn & Teugels, Jozef L., 1997. "The adjustment function in ruin estimates under interest force," Insurance: Mathematics and Economics, Elsevier, vol. 19(2), pages 85-94, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spt:stecon:v:6:y:2017:i:3:f:6_3_4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Eleftherios Spyromitros-Xioufis (email available below). General contact details of provider: http://www.scienpress.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.