IDEAS home Printed from https://ideas.repec.org/b/dau/thesis/123456789-12804.html
   My bibliography  Save this book

Contributions computationnelles à la statistique Bayésienne

Editor

Listed:
  • Robert, Christian P.

Author

Listed:
  • Jacob, Pierre E.

Abstract

This thesis presents contributions to the Monte Carlo methodology used in Bayesian statistics. The Bayesian framework is one of the main approaches to statistics and includes a rich methodology to perform inference and model choice. However, as statistical models become more realistic and drift away from the classical assumptions of normality and linearity, computing some of the quantities involved in the statistical analysis becomes a challenge in itself. In particular high-dimensional integrals have to be efficiently approximated, where the integrands can be highly multimodal. Moreover each point-wise evaluation of the integrands can require a lot of computational effort, which results in expensive integration schemes. These integrals are typically approximated using Monte Carlo methods, requiring the ability to sample from general probability distributions. The first chapter of this document explains this motivating context and reviews some of the most generic Monte Carlo techniques. The following chapters aim at improving some of these techniques, at proposing new methods and at analysing their theoretical properties, in the context of sampling from multimodal and computationally expensive probability distributions.

Suggested Citation

  • Jacob, Pierre E., 2012. "Contributions computationnelles à la statistique Bayésienne," Economics Thesis from University Paris Dauphine, Paris Dauphine University, number 123456789/12804 edited by Robert, Christian P..
  • Handle: RePEc:dau:thesis:123456789/12804
    Note: dissertation
    as

    Download full text from publisher

    File URL: http://basepub.dauphine.fr/xmlui/bitstream/123456789/12804/1/2012PA090031.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Douc, R. & Fort, G. & Moulines, E. & Priouret, P., 2009. "Forgetting the initial distribution for Hidden Markov Models," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1235-1256, April.
    2. Nicolas Chopin, 2002. "A sequential particle filter method for static models," Biometrika, Biometrika Trust, vol. 89(3), pages 539-552, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mevin B. Hooten & Michael R. Schwob & Devin S. Johnson & Jacob S. Ivan, 2023. "Multistage hierarchical capture–recapture models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(6), September.
    2. Arnaud Dufays, 2016. "Evolutionary Sequential Monte Carlo Samplers for Change-Point Models," Econometrics, MDPI, vol. 4(1), pages 1-33, March.
    3. Jeong Eun Lee & Christian Robert, 2013. "Imortance Sampling Schemes for Evidence Approximation in Mixture Models," Working Papers 2013-42, Center for Research in Economics and Statistics.
    4. Laruelle Sophie & Pagès Gilles, 2012. "Stochastic approximation with averaging innovation applied to Finance," Monte Carlo Methods and Applications, De Gruyter, vol. 18(1), pages 1-51, January.
    5. James Martin & Ajay Jasra & Emma McCoy, 2013. "Inference for a class of partially observed point process models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(3), pages 413-437, June.
    6. Nathaniel Tomasetti & Catherine Forbes & Anastasios Panagiotelis, 2019. "Updating Variational Bayes: Fast Sequential Posterior Inference," Monash Econometrics and Business Statistics Working Papers 13/19, Monash University, Department of Econometrics and Business Statistics.
    7. Ho, Paul, 2023. "Global robust Bayesian analysis in large models," Journal of Econometrics, Elsevier, vol. 235(2), pages 608-642.
    8. Emmanuel Mamatzakis & Mike G. Tsionas, 2021. "Testing for persistence in US mutual funds’ performance: a Bayesian dynamic panel model," Annals of Operations Research, Springer, vol. 299(1), pages 1203-1233, April.
    9. Mariolis Theodore & Konstantakis Konstantinos N. & Michaelides Panayotis G. & Tsionas Efthymios G., 2019. "A non-linear Keynesian Goodwin-type endogenous model of the cycle: Bayesian evidence for the USA," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 23(1), pages 1-16, February.
    10. Edward Herbst & Frank Schorfheide, 2014. "Sequential Monte Carlo Sampling For Dsge Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(7), pages 1073-1098, November.
    11. Michael Cai & Marco Del Negro & Edward Herbst & Ethan Matlin & Reca Sarfati & Frank Schorfheide, 2021. "Online estimation of DSGE models," The Econometrics Journal, Royal Economic Society, vol. 24(1), pages 33-58.
    12. Xiaohong Chen & Timothy M. Christensen & Elie Tamer, 2018. "Monte Carlo Confidence Sets for Identified Sets," Econometrica, Econometric Society, vol. 86(6), pages 1965-2018, November.
    13. Hirokuni Iiboshi & Mototsugu Shintani & Kozo Ueda, 2022. "Estimating a Nonlinear New Keynesian Model with the Zero Lower Bound for Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(6), pages 1637-1671, September.
    14. Chopin, Nicolas & Pelgrin, Florian, 2004. "Bayesian inference and state number determination for hidden Markov models: an application to the information content of the yield curve about inflation," Journal of Econometrics, Elsevier, vol. 123(2), pages 327-344, December.
    15. Nathan Cunningham & Jim E. Griffin & David L. Wild, 2020. "ParticleMDI: particle Monte Carlo methods for the cluster analysis of multiple datasets with applications to cancer subtype identification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 14(2), pages 463-484, June.
    16. Ettmeier, Stephanie & Kriwoluzky, Alexander, 2019. "Active, or passive? Revisiting the role of fiscal policy in the Great Inflation," VfS Annual Conference 2019 (Leipzig): 30 Years after the Fall of the Berlin Wall - Democracy and Market Economy 203609, Verein für Socialpolitik / German Economic Association.
    17. Nicolas Chopin & Mathieu Gerber, 2017. "Sequential quasi-Monte Carlo: Introduction for Non-Experts, Dimension Reduction, Application to Partly Observed Diffusion Processes," Working Papers 2017-35, Center for Research in Economics and Statistics.
    18. Stephanie Ettmeier & Alexander Kriwoluzky, 2020. "Active, or Passive? Revisiting the Role of Fiscal Policy in the Great Inflation," Discussion Papers of DIW Berlin 1872, DIW Berlin, German Institute for Economic Research.
    19. Andras Fulop & Junye Li & Jun Yu, 2012. "Investigating Impacts of Self-Exciting Jumps in Returns and Volatility: A Bayesian Learning Approach," Global COE Hi-Stat Discussion Paper Series gd12-264, Institute of Economic Research, Hitotsubashi University.
    20. Li, Dan & Clements, Adam & Drovandi, Christopher, 2023. "A Bayesian approach for more reliable tail risk forecasts," Journal of Financial Stability, Elsevier, vol. 64(C).

    More about this item

    Keywords

    bayesian statistics; Monte Carlo methodology;

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:dau:thesis:123456789/12804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alexandre Faure (email available below). General contact details of provider: https://edirc.repec.org/data/daup9fr.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.