IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v117y2007i10p1373-1403.html
   My bibliography  Save this article

Large deviations for weighted empirical mean with outliers

Author

Listed:
  • Maïda, M.
  • Najim, J.
  • Péché, S.

Abstract

We study in this article the large deviations for the weighted empirical mean , where is a sequence of -valued independent and identically distributed random variables with some exponential moments and where the deterministic weights are mxd matrices. Here is a continuous application defined on a locally compact metric space and we assume that the empirical measure weakly converges to some probability distribution R with compact support . The scope of this paper is to study the effect on the Large Deviation Principle (LDP) of outliers, that is elements such that We show that outliers can have a dramatic impact on the rate function driving the LDP for Ln. We also show that the statement of a LDP in this case requires specific assumptions related to the large deviations of the single random variable . This is the main input with respect to a previous work by Najim [J. Najim, A Cramér type theorem for weighted random variables, Electron. J. Probab. 7 (4) (2002) 32 (electronic)].

Suggested Citation

  • Maïda, M. & Najim, J. & Péché, S., 2007. "Large deviations for weighted empirical mean with outliers," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1373-1403, October.
  • Handle: RePEc:eee:spapps:v:117:y:2007:i:10:p:1373-1403
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(07)00021-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gamboa, F. & Rouault, A. & Zani, M., 1999. "A functional large deviations principle for quadratic forms of Gaussian stationary processes," Statistics & Probability Letters, Elsevier, vol. 43(3), pages 299-308, July.
    2. Baik, Jinho & Silverstein, Jack W., 2006. "Eigenvalues of large sample covariance matrices of spiked population models," Journal of Multivariate Analysis, Elsevier, vol. 97(6), pages 1382-1408, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yata, Kazuyoshi & Aoshima, Makoto, 2013. "PCA consistency for the power spiked model in high-dimensional settings," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 334-354.
    2. Jung, Sungkyu & Sen, Arusharka & Marron, J.S., 2012. "Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA," Journal of Multivariate Analysis, Elsevier, vol. 109(C), pages 190-203.
    3. Forzani, Liliana & Gieco, Antonella & Tolmasky, Carlos, 2017. "Likelihood ratio test for partial sphericity in high and ultra-high dimensions," Journal of Multivariate Analysis, Elsevier, vol. 159(C), pages 18-38.
    4. Michael Bridges & Elizabeth A Heron & Colm O'Dushlaine & Ricardo Segurado & The International Schizophrenia Consortium (ISC) & Derek Morris & Aiden Corvin & Michael Gill & Carlos Pinto, 2011. "Genetic Classification of Populations Using Supervised Learning," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-12, May.
    5. Hachem, Walid & Loubaton, Philippe & Mestre, Xavier & Najim, Jamal & Vallet, Pascal, 2013. "A subspace estimator for fixed rank perturbations of large random matrices," Journal of Multivariate Analysis, Elsevier, vol. 114(C), pages 427-447.
    6. Couillet, Romain, 2015. "Robust spiked random matrices and a robust G-MUSIC estimator," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 139-161.
    7. F. Gamboa & A. Rouault, 2010. "Canonical Moments and Random Spectral Measures," Journal of Theoretical Probability, Springer, vol. 23(4), pages 1015-1038, December.
    8. Joongyeub Yeo & George Papanicolaou, 2016. "Random matrix approach to estimation of high-dimensional factor models," Papers 1611.05571, arXiv.org, revised Nov 2017.
    9. Deo, Rohit S., 2016. "On the Tracy–Widom approximation of studentized extreme eigenvalues of Wishart matrices," Journal of Multivariate Analysis, Elsevier, vol. 147(C), pages 265-272.
    10. Nick Patterson & Alkes L Price & David Reich, 2006. "Population Structure and Eigenanalysis," PLOS Genetics, Public Library of Science, vol. 2(12), pages 1-20, December.
    11. Benaych-Georges, Florent & Nadakuditi, Raj Rao, 2012. "The singular values and vectors of low rank perturbations of large rectangular random matrices," Journal of Multivariate Analysis, Elsevier, vol. 111(C), pages 120-135.
    12. Brendan P. W. Ames & Mingyi Hong, 2016. "Alternating direction method of multipliers for penalized zero-variance discriminant analysis," Computational Optimization and Applications, Springer, vol. 64(3), pages 725-754, July.
    13. Patrick K. Kimes & Yufeng Liu & David Neil Hayes & James Stephen Marron, 2017. "Statistical significance for hierarchical clustering," Biometrics, The International Biometric Society, vol. 73(3), pages 811-821, September.
    14. Edoardo Saccenti & Marieke E. Timmerman, 2017. "Considering Horn’s Parallel Analysis from a Random Matrix Theory Point of View," Psychometrika, Springer;The Psychometric Society, vol. 82(1), pages 186-209, March.
    15. Ding, Xiucai & Ji, Hong Chang, 2023. "Spiked multiplicative random matrices and principal components," Stochastic Processes and their Applications, Elsevier, vol. 163(C), pages 25-60.
    16. Shu Wang & Jia-Ren Lin & Eduardo D Sontag & Peter K Sorger, 2019. "Inferring reaction network structure from single-cell, multiplex data, using toric systems theory," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-25, December.
    17. Feher Kristen & Whelan James & Müller Samuel, 2012. "Exploring Multicollinearity Using a Random Matrix Theory Approach," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-35, May.
    18. Feldman, Michael J., 2023. "Spiked singular values and vectors under extreme aspect ratios," Journal of Multivariate Analysis, Elsevier, vol. 196(C).
    19. Weiming Li & Jianfeng Yao, 2015. "On generalized expectation-based estimation of a population spectral distribution from high-dimensional data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(2), pages 359-373, April.
    20. Bo Zhang & Jiti Gao & Guangming Pan & Yanrong Yang, 2019. "Spiked Eigenvalues of High-Dimensional Separable Sample Covariance Matrices," Monash Econometrics and Business Statistics Working Papers 31/19, Monash University, Department of Econometrics and Business Statistics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:117:y:2007:i:10:p:1373-1403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.