IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v116y2006i7p1048-1065.html
   My bibliography  Save this article

Parameter estimation and asymptotic stability in stochastic filtering

Author

Listed:
  • Papavasiliou, Anastasia

Abstract

In this paper, we study the problem of estimating a Markov chain X (signal) from its noisy partial information Y, when the transition probability kernel depends on some unknown parameters. Our goal is to compute the conditional distribution process , referred to hereafter as the optimal filter. Following a standard Bayesian technique, we treat the parameters as a non-dynamic component of the Markov chain. As a result, the new Markov chain is not going to be mixing, even if the original one is. We show that, under certain conditions, the optimal filters are still going to be asymptotically stable with respect to the initial conditions. Thus, by computing the optimal filter of the new system, we can estimate the signal adaptively.

Suggested Citation

  • Papavasiliou, Anastasia, 2006. "Parameter estimation and asymptotic stability in stochastic filtering," Stochastic Processes and their Applications, Elsevier, vol. 116(7), pages 1048-1065, July.
  • Handle: RePEc:eee:spapps:v:116:y:2006:i:7:p:1048-1065
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(06)00002-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Budhiraja, A. & Ocone, D., 1999. "Exponential stability in discrete-time filtering for non-ergodic signals," Stochastic Processes and their Applications, Elsevier, vol. 82(2), pages 245-257, August.
    2. Kunita, Hiroshi, 1971. "Asymptotic behavior of the nonlinear filtering errors of Markov processes," Journal of Multivariate Analysis, Elsevier, vol. 1(4), pages 365-393, December.
    3. Christophe Andrieu & Arnaud Doucet, 2002. "Particle filtering for partially observed Gaussian state space models," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 827-836, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Douc, Randal & Olsson, Jimmy & Roueff, François, 2020. "Posterior consistency for partially observed Markov models," Stochastic Processes and their Applications, Elsevier, vol. 130(2), pages 733-759.
    2. Jian He & Asma Khedher & Peter Spreij, 2021. "A Kalman particle filter for online parameter estimation with applications to affine models," Statistical Inference for Stochastic Processes, Springer, vol. 24(2), pages 353-403, July.
    3. Zhiqiang Li & Jie Xiong, 2015. "Stability of the filter with Poisson observations," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 293-313, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Budhiraja, A., 2001. "Ergodic properties of the nonlinear filter," Stochastic Processes and their Applications, Elsevier, vol. 95(1), pages 1-24, September.
    2. LeGland, François & Oudjane, Nadia, 2003. "A robustification approach to stability and to uniform particle approximation of nonlinear filters: the example of pseudo-mixing signals," Stochastic Processes and their Applications, Elsevier, vol. 106(2), pages 279-316, August.
    3. Douc, R. & Fort, G. & Moulines, E. & Priouret, P., 2009. "Forgetting the initial distribution for Hidden Markov Models," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1235-1256, April.
    4. Wen Xu, 2016. "Estimation of Dynamic Panel Data Models with Stochastic Volatility Using Particle Filters," Econometrics, MDPI, vol. 4(4), pages 1-13, October.
    5. Zhiqiang Li & Jie Xiong, 2015. "Stability of the filter with Poisson observations," Statistical Inference for Stochastic Processes, Springer, vol. 18(3), pages 293-313, October.
    6. Ying Jiao, 2009. "Multiple defaults and contagion risks," Working Papers hal-00441500, HAL.
    7. Moral, P. Del & Guionnet, A., 1998. "Large deviations for interacting particle systems: Applications to non-linear filtering," Stochastic Processes and their Applications, Elsevier, vol. 78(1), pages 69-95, October.
    8. Calvet, Laurent-Emmanuel & Czellar , Veronika, 2011. "state-observation sampling and the econometrics of learning models," HEC Research Papers Series 947, HEC Paris.
    9. Ying Jiao, 2009. "Multiple defaults and contagion risks," Papers 0912.3132, arXiv.org.
    10. Beatris Adriana Escobedo-Trujillo & Javier Garrido-Meléndez & Gerardo Alcalá & J. D. Revuelta-Acosta, 2022. "Optimal Control with Partially Observed Regime Switching: Discounted and Average Payoffs," Mathematics, MDPI, vol. 10(12), pages 1-28, June.
    11. Name 1 Dieter Wang Email 1 & Iman (I.P.P.) van Lelyveld & Julia (J.) Schaumburg, 2018. "Do information contagion and business model similarities explain bank credit risk commonalities?," Tinbergen Institute Discussion Papers 18-100/IV, Tinbergen Institute.
    12. Nonejad, Nima, 2014. "Particle Gibbs with Ancestor Sampling Methods for Unobserved Component Time Series Models with Heavy Tails, Serial Dependence and Structural Breaks," MPRA Paper 55664, University Library of Munich, Germany.
    13. Deck, T., 2006. "Asymptotic properties of Bayes estimators for Gaussian Itô-processes with noisy observations," Journal of Multivariate Analysis, Elsevier, vol. 97(2), pages 563-573, February.
    14. Chopin, N. & Del Moral, P. & Rubenthaler, S., 2011. "Stability of Feynman-Kac formulae with path-dependent potentials," Stochastic Processes and their Applications, Elsevier, vol. 121(1), pages 38-60, January.
    15. Nalan Basturk & Cem Cakmakli & S. Pinar Ceyhan & Herman K. van Dijk, 2014. "On the Rise of Bayesian Econometrics after Cowles Foundation Monographs 10, 14," Tinbergen Institute Discussion Papers 14-085/III, Tinbergen Institute, revised 04 Sep 2014.
    16. P. Del Moral & M. Ledoux, 2000. "Convergence of Empirical Processes for Interacting Particle Systems with Applications to Nonlinear Filtering," Journal of Theoretical Probability, Springer, vol. 13(1), pages 225-257, January.
    17. A. E. Brockwell & N. H. Chan & P. K. Lee, 2003. "A class of models for aggregated traffic volume time series," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 52(4), pages 417-430, October.
    18. Andreas Hetland, 2018. "The Stochastic Stationary Root Model," Econometrics, MDPI, vol. 6(3), pages 1-33, August.
    19. Mark Briers & Arnaud Doucet & Simon Maskell, 2010. "Smoothing algorithms for state–space models," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 62(1), pages 61-89, February.
    20. Nonejad Nima, 2015. "Particle Gibbs with ancestor sampling for stochastic volatility models with: heavy tails, in mean effects, leverage, serial dependence and structural breaks," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 19(5), pages 561-584, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:116:y:2006:i:7:p:1048-1065. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.