IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v180y2022ics0167715221002005.html
   My bibliography  Save this article

Quenched distributions for the maximum, minimum and local time of the Brox diffusion

Author

Listed:
  • Gutierrez-Pavón, Jonathan
  • Pacheco, Carlos G.

Abstract

After leaving fixed the environment, which is called the quenchend case, we give explicitly the distribution function of the maximum and the minimum of the Brox diffusion at first time it reaches a barrier. We also give explicit quenched formulæfor the distribution function of the local time of the Brox process at first hitting time of a constant, and at first exit time from an interval. To do that, we use the distribution functions of the maximum and of the minimum of the Brownian motion, as well as the local time of the Brownian motion. The main idea is to use the fact that the Brox diffusion can be written in terms of a time-change of a standard Brownian motion, and also to work with specific stopping times, namely, the first hitting time and exit time from an interval. As a bonus, we provide proofs of known formulas for the Brownian motion.

Suggested Citation

  • Gutierrez-Pavón, Jonathan & Pacheco, Carlos G., 2022. "Quenched distributions for the maximum, minimum and local time of the Brox diffusion," Statistics & Probability Letters, Elsevier, vol. 180(C).
  • Handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221002005
    DOI: 10.1016/j.spl.2021.109238
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715221002005
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2021.109238?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gutierrez-Pavón, Jonathan & Pacheco, Carlos G., 2020. "A density for the local time of the Brox diffusion," Statistics & Probability Letters, Elsevier, vol. 163(C).
    2. Shi, Zhan, 1998. "A local time curiosity in random environment," Stochastic Processes and their Applications, Elsevier, vol. 76(2), pages 231-250, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreoletti, Pierre, 2006. "On the concentration of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1377-1408, October.
    2. Andreoletti, Pierre, 2007. "Almost sure estimates for the concentration neighborhood of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1473-1490, October.
    3. Pierre Andreoletti & Roland Diel, 2011. "Limit Law of the Local Time for Brox’s Diffusion," Journal of Theoretical Probability, Springer, vol. 24(3), pages 634-656, September.
    4. Zindy, Olivier, 2008. "Upper limits of Sinai's walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 981-1003, June.
    5. Hu, Yaozhong & Lê, Khoa & Mytnik, Leonid, 2017. "Stochastic differential equation for Brox diffusion," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2281-2315.
    6. Diel, Roland, 2011. "Almost sure asymptotics for the local time of a diffusion in Brownian environment," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2303-2330, October.
    7. Hu, Yueyun, 2000. "Tightness of localization and return time in random environment," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 81-101, March.
    8. Grégoire Véchambre, 2023. "Almost Sure Behavior for the Local Time of a Diffusion in a Spectrally Negative Lévy Environment," Journal of Theoretical Probability, Springer, vol. 36(2), pages 876-925, June.
    9. Gutierrez-Pavón, Jonathan & Pacheco, Carlos G., 2020. "A density for the local time of the Brox diffusion," Statistics & Probability Letters, Elsevier, vol. 163(C).
    10. Gantert, Nina & Shi, Zhan, 2002. "Many visits to a single site by a transient random walk in random environment," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 159-176, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:180:y:2022:i:c:s0167715221002005. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.