IDEAS home Printed from https://ideas.repec.org/a/eee/spapps/v99y2002i2p159-176.html
   My bibliography  Save this article

Many visits to a single site by a transient random walk in random environment

Author

Listed:
  • Gantert, Nina
  • Shi, Zhan

Abstract

We consider a transient random walk on in random environment, and study the almost sure asymptotics of the supremum of its local time. Our main result states that if the random walk has zero speed, there is a (random) sequence of sites and a (random) sequence of times such that the walk spends a positive fraction of the times at these sites. This was known for a recurrent random walk in random environment (Random Walk in Random and Non-Random Environments, World Scientific, Singapore, 1990; Stochastic Process. Appl. 76 (1998) 231). Our method of proof is different and relies on the connection of random walk in random environment with branching processes in random environment used in Kesten et al. (Compositio Math. 30 (1975) 145).

Suggested Citation

  • Gantert, Nina & Shi, Zhan, 2002. "Many visits to a single site by a transient random walk in random environment," Stochastic Processes and their Applications, Elsevier, vol. 99(2), pages 159-176, June.
  • Handle: RePEc:eee:spapps:v:99:y:2002:i:2:p:159-176
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304-4149(02)00089-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afanasyev, V. I., 2001. "On the maximum of a subcritical branching process in a random environment," Stochastic Processes and their Applications, Elsevier, vol. 93(1), pages 87-107, May.
    2. Shi, Zhan, 1998. "A local time curiosity in random environment," Stochastic Processes and their Applications, Elsevier, vol. 76(2), pages 231-250, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Grégoire Véchambre, 2023. "Almost Sure Behavior for the Local Time of a Diffusion in a Spectrally Negative Lévy Environment," Journal of Theoretical Probability, Springer, vol. 36(2), pages 876-925, June.
    2. Andreoletti, Pierre, 2006. "On the concentration of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1377-1408, October.
    3. Andreoletti, Pierre, 2007. "Almost sure estimates for the concentration neighborhood of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1473-1490, October.
    4. Zindy, Olivier, 2008. "Upper limits of Sinai's walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 981-1003, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreoletti, Pierre, 2006. "On the concentration of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 116(10), pages 1377-1408, October.
    2. Gutierrez-Pavón, Jonathan & Pacheco, Carlos G., 2022. "Quenched distributions for the maximum, minimum and local time of the Brox diffusion," Statistics & Probability Letters, Elsevier, vol. 180(C).
    3. Andreoletti, Pierre, 2007. "Almost sure estimates for the concentration neighborhood of Sinai's walk," Stochastic Processes and their Applications, Elsevier, vol. 117(10), pages 1473-1490, October.
    4. Pierre Andreoletti & Roland Diel, 2011. "Limit Law of the Local Time for Brox’s Diffusion," Journal of Theoretical Probability, Springer, vol. 24(3), pages 634-656, September.
    5. Zindy, Olivier, 2008. "Upper limits of Sinai's walk in random scenery," Stochastic Processes and their Applications, Elsevier, vol. 118(6), pages 981-1003, June.
    6. Hu, Yaozhong & Lê, Khoa & Mytnik, Leonid, 2017. "Stochastic differential equation for Brox diffusion," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2281-2315.
    7. Diel, Roland, 2011. "Almost sure asymptotics for the local time of a diffusion in Brownian environment," Stochastic Processes and their Applications, Elsevier, vol. 121(10), pages 2303-2330, October.
    8. Hu, Yueyun, 2000. "Tightness of localization and return time in random environment," Stochastic Processes and their Applications, Elsevier, vol. 86(1), pages 81-101, March.
    9. Grégoire Véchambre, 2023. "Almost Sure Behavior for the Local Time of a Diffusion in a Spectrally Negative Lévy Environment," Journal of Theoretical Probability, Springer, vol. 36(2), pages 876-925, June.
    10. Gutierrez-Pavón, Jonathan & Pacheco, Carlos G., 2020. "A density for the local time of the Brox diffusion," Statistics & Probability Letters, Elsevier, vol. 163(C).
    11. Chen, Dayue & de Raphélis, Loïc & Hu, Yueyun, 2018. "Favorite sites of randomly biased walks on a supercritical Galton–Watson tree," Stochastic Processes and their Applications, Elsevier, vol. 128(5), pages 1525-1557.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:spapps:v:99:y:2002:i:2:p:159-176. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/505572/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.