IDEAS home Printed from https://ideas.repec.org/a/eee/socmed/v65y2007i1p43-59.html
   My bibliography  Save this article

Spatial implications of covariate adjustment on patterns of risk: Respiratory hospital admissions in Christchurch, New Zealand

Author

Listed:
  • Sabel, Clive Eric
  • Wilson, Jeff Gaines
  • Kingham, Simon
  • Tisch, Catherine
  • Epton, Mike

Abstract

Epidemiological studies that examine the relationship between environmental exposures and health often address other determinants of health that may influence the relationship being studied by adjusting for these factors as covariates. While disease surveillance methods routinely control for covariates such as deprivation, there has been limited investigative work on the spatial movement of risk at the intraurban scale due to the adjustment. It is important that the nature of any spatial relocation be well understood as a relocation to areas of increased risk may also introduce additional localised factors that influence the exposure-response relationship. This paper examines the spatial patterns of relative risk and clusters of hospitalisations based on an illustrative small-area example from Christchurch, New Zealand. A four-stage test of the spatial relocation effects of covariate adjustment was performed. First, relative risks for respiratory hospitalisations from 1999 to 2004 at the census area unit level were adjusted for age and sex. In three subsequent tests, admissions were adjusted for annual exposure to particulate matter less than 10[mu]m in diameter (PM10), then for a deprivation index, and finally for both PM10 and deprivation. Spatial patterns of risk, disease clusters and cold and hot spots were generated using a spatial scan statistic and a Getis-Ord Gi* statistic. In all disease groups tested (except the control disease), adjustment for chronic PM10 exposure and deprivation modified the position of clusters substantially, as well as notably shifting patterns and hot/cold spots of relative risk. Adjusting for PM10 and/or for deprivation shifted clusters in a similar spatial fashion. In Christchurch, the resulting shift relocated the cluster from a purely residential area to a mixed residential/industrial area, possibly introducing new environmental exposures. Researchers should be aware of the potential spatial effects inherent in adjusting for covariates when considering study design and interpreting results.

Suggested Citation

  • Sabel, Clive Eric & Wilson, Jeff Gaines & Kingham, Simon & Tisch, Catherine & Epton, Mike, 2007. "Spatial implications of covariate adjustment on patterns of risk: Respiratory hospital admissions in Christchurch, New Zealand," Social Science & Medicine, Elsevier, vol. 65(1), pages 43-59, July.
  • Handle: RePEc:eee:socmed:v:65:y:2007:i:1:p:43-59
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0277-9536(07)00101-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicky Best & Samantha Cockings & James Bennett & Jon Wakefield & Paul Elliott, 2001. "Ecological regression analysis of environmental benzene exposure and childhood leukaemia: sensitivity to data inaccuracies, geographical scale and ecological bias," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 155-174.
    2. Francesca Dominici & Lianne Sheppard & Merlise Clyde, 2003. "Health Effects of Air Pollution: A Statistical Review," International Statistical Review, International Statistical Institute, vol. 71(2), pages 243-276, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hung Chak Ho & Kevin Ka-Lun Lau & Ruby Yu & Dan Wang & Jean Woo & Timothy Chi Yui Kwok & Edward Ng, 2017. "Spatial Variability of Geriatric Depression Risk in a High-Density City: A Data-Driven Socio-Environmental Vulnerability Mapping Approach," IJERPH, MDPI, vol. 14(9), pages 1-16, August.
    2. Severine Deguen & Nina Ahlers & Morgane Gilles & Arlette Danzon & Marion Carayol & Denis Zmirou-Navier & Wahida Kihal-Talantikite, 2018. "Using a Clustering Approach to Investigate Socio-Environmental Inequality in Preterm Birth—A Study Conducted at Fine Spatial Scale in Paris (France)," IJERPH, MDPI, vol. 15(9), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Irene L. Hudson & Linda Moore & Eric J. Beh & David G. Steel, 2010. "Ecological inference techniques: an empirical evaluation using data describing gender and voter turnout at New Zealand elections, 1893–1919," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 185-213, January.
    2. Winifred U. Anake & Faith O. Bayode & Hassana O. Jonathan & Conrad A. Omonhinmin & Oluwole A. Odetunmibi & Timothy A. Anake, 2022. "Screening of Plant Species Response and Performance for Green Belt Development: Implications for Semi-Urban Ecosystem Restoration," Sustainability, MDPI, vol. 14(7), pages 1-14, March.
    3. Severine Deguen & Nina Ahlers & Morgane Gilles & Arlette Danzon & Marion Carayol & Denis Zmirou-Navier & Wahida Kihal-Talantikite, 2018. "Using a Clustering Approach to Investigate Socio-Environmental Inequality in Preterm Birth—A Study Conducted at Fine Spatial Scale in Paris (France)," IJERPH, MDPI, vol. 15(9), pages 1-19, August.
    4. Adam A. Szpiro & Lianne Sheppard & Sara D. Adar & Joel D. Kaufman, 2014. "Estimating acute air pollution health effects from cohort study data," Biometrics, The International Biometric Society, vol. 70(1), pages 164-174, March.
    5. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    6. Phuong T. Vu & Timothy V. Larson & Adam A. Szpiro, 2020. "Probabilistic predictive principal component analysis for spatially misaligned and high‐dimensional air pollution data with missing observations," Environmetrics, John Wiley & Sons, Ltd., vol. 31(4), June.
    7. Takahiro Yoshida & Morito Tsutsumi, 2018. "On the effects of spatial relationships in spatial compositional multivariate models," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 57-70, March.
    8. Phuong T. Vu & Adam A. Szpiro & Noah Simon, 2022. "Spatial matrix completion for spatially misaligned and high‐dimensional air pollution data," Environmetrics, John Wiley & Sons, Ltd., vol. 33(4), June.
    9. Beatty, Timothy K.M. & Shimshack, Jay P., 2014. "Air pollution and children's respiratory health: A cohort analysis," Journal of Environmental Economics and Management, Elsevier, vol. 67(1), pages 39-57.
    10. Qinling Yan & Sanyi Tang & Zhen Jin & Yanni Xiao, 2019. "Identifying Risk Factors Of A(H7N9) Outbreak by Wavelet Analysis and Generalized Estimating Equation," IJERPH, MDPI, vol. 16(8), pages 1-13, April.
    11. Enora Belz & Arthur Charpentier, 2019. "Aggregated Data and Compositional Variables: Methodological Note [Données Agrégées et Variables Compositionnelles : Note Méthodologique]," Working Papers hal-02097031, HAL.
    12. repec:jss:jstsof:12:i03 is not listed on IDEAS
    13. Katherine A. Guthrie & Lianne Sheppard & Jon Wakefield, 2002. "A Hierarchical Aggregate Data Model with Spatially Correlated Disease Rates," Biometrics, The International Biometric Society, vol. 58(4), pages 898-905, December.
    14. Peter Guttorp, 2003. "Environmental Statistics—A Personal View," International Statistical Review, International Statistical Institute, vol. 71(2), pages 169-179, August.
    15. X. Pautrel, 2008. "Reconsidering the Impact of the Environment on Long-run Growth when Pollution Influences Health and Agents have a Finite-lifetime," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 40(1), pages 37-52, May.
    16. Christopher Jackson & And Nicky Best & Sylvia Richardson, 2008. "Hierarchical related regression for combining aggregate and individual data in studies of socio‐economic disease risk factors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 159-178, January.
    17. Gillian A. Lancaster & Mick Green & Steven Lane, 2006. "Reducing bias in ecological studies: an evaluation of different methodologies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 681-700, October.
    18. Magali Delmas & Maria J. Montes‐Sancho & Jay P. Shimshack, 2010. "Information Disclosure Policies: Evidence From The Electricity Industry," Economic Inquiry, Western Economic Association International, vol. 48(2), pages 483-498, April.
    19. Stefka Fidanova & Petar Zhivkov & Olympia Roeva, 2022. "InterCriteria Analysis Applied on Air Pollution Influence on Morbidity," Mathematics, MDPI, vol. 10(7), pages 1-8, April.
    20. Julie E. Goodman & Catherine Petito Boyce & Sonja N. Sax & Leslie A. Beyer & Robyn L. Prueitt, 2015. "Rethinking Meta‐Analysis: Applications for Air Pollution Data and Beyond," Risk Analysis, John Wiley & Sons, vol. 35(6), pages 1017-1039, June.
    21. Ruth M. Pfeiffer & Mitchell H. Gail, 2023. "Discussion of “A formal causal interpretation of the case‐crossover design” by Zach Shahn, Miguel A. Hernan, and James M. Robins," Biometrics, The International Biometric Society, vol. 79(2), pages 1346-1348, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:socmed:v:65:y:2007:i:1:p:43-59. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/315/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.