IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v58y2002i4p898-905.html
   My bibliography  Save this article

A Hierarchical Aggregate Data Model with Spatially Correlated Disease Rates

Author

Listed:
  • Katherine A. Guthrie
  • Lianne Sheppard
  • Jon Wakefield

Abstract

No abstract is available for this item.

Suggested Citation

  • Katherine A. Guthrie & Lianne Sheppard & Jon Wakefield, 2002. "A Hierarchical Aggregate Data Model with Spatially Correlated Disease Rates," Biometrics, The International Biometric Society, vol. 58(4), pages 898-905, December.
  • Handle: RePEc:bla:biomet:v:58:y:2002:i:4:p:898-905
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/j.0006-341X.2002.00898.x
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katherine A. Guthrie & Lianne Sheppard, 2001. "Overcoming biases and misconceptions in ecological studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 141-154.
    2. Nicky Best & Samantha Cockings & James Bennett & Jon Wakefield & Paul Elliott, 2001. "Ecological regression analysis of environmental benzene exposure and childhood leukaemia: sensitivity to data inaccuracies, geographical scale and ecological bias," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 155-174.
    3. Julian Besag & Jeremy York & Annie Mollié, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 43(1), pages 1-20, March.
    4. Jonathan Wakefield & Ruth Salway, 2001. "A statistical framework for ecological and aggregate studies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 119-137.
    5. W. R. Gilks & P. Wild, 1992. "Adaptive Rejection Sampling for Gibbs Sampling," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 41(2), pages 337-348, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Francesca Dominici & Lianne Sheppard & Merlise Clyde, 2003. "Health Effects of Air Pollution: A Statistical Review," International Statistical Review, International Statistical Institute, vol. 71(2), pages 243-276, August.
    2. Gillian A. Lancaster & Mick Green & Steven Lane, 2006. "Reducing bias in ecological studies: an evaluation of different methodologies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 681-700, October.
    3. Jon Wakefield, 2003. "Sensitivity Analyses for Ecological Regression," Biometrics, The International Biometric Society, vol. 59(1), pages 9-17, March.
    4. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables (with discussion)," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-445, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gillian A. Lancaster & Mick Green & Steven Lane, 2006. "Reducing bias in ecological studies: an evaluation of different methodologies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 681-700, October.
    2. Ying C. MacNab, 2018. "Some recent work on multivariate Gaussian Markov random fields," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(3), pages 497-541, September.
    3. Chakraborty, Sounak, 2009. "Simultaneous cancer classification and gene selection with Bayesian nearest neighbor method: An integrated approach," Computational Statistics & Data Analysis, Elsevier, vol. 53(4), pages 1462-1474, February.
    4. Ngianga-Bakwin Kandala & Chibuzor Christopher Nnanatu & Glory Atilola & Paul Komba & Lubanzadio Mavatikua & Zhuzhi Moore & Gerry Mackie & Bettina Shell-Duncan, 2019. "A Spatial Analysis of the Prevalence of Female Genital Mutilation/Cutting among 0–14-Year-Old Girls in Kenya," IJERPH, MDPI, vol. 16(21), pages 1-28, October.
    5. Zhuoqiong He & Dongchu Sun, 2000. "Hierarchical Bayes Estimation of Hunting Success Rates with Spatial Correlations," Biometrics, The International Biometric Society, vol. 56(2), pages 360-367, June.
    6. Christopher Jackson & And Nicky Best & Sylvia Richardson, 2008. "Hierarchical related regression for combining aggregate and individual data in studies of socio‐economic disease risk factors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 159-178, January.
    7. Jon Wakefield, 2004. "Ecological inference for 2 × 2 tables (with discussion)," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(3), pages 385-445, July.
    8. Jon Wakefield, 2003. "Sensitivity Analyses for Ecological Regression," Biometrics, The International Biometric Society, vol. 59(1), pages 9-17, March.
    9. Jesse J Plascak & James L Fisher, 2013. "Area-Based Socioeconomic Position and Adult Glioma: A Hierarchical Analysis of Surveillance Epidemiology and End Results Data," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-9, April.
    10. Duncan Lee & Chris Robertson & Colin Ramsay & Kate Pyper, 2020. "Quantifying the impact of the modifiable areal unit problem when estimating the health effects of air pollution," Environmetrics, John Wiley & Sons, Ltd., vol. 31(8), December.
    11. Katie Wilson & Jon Wakefield, 2022. "A probabilistic model for analyzing summary birth history data," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 47(11), pages 291-344.
    12. Irene L. Hudson & Linda Moore & Eric J. Beh & David G. Steel, 2010. "Ecological inference techniques: an empirical evaluation using data describing gender and voter turnout at New Zealand elections, 1893–1919," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 185-213, January.
    13. Pang, W. K. & Yang, Z. H. & Hou, S. H. & Leung, P. K., 2002. "Non-uniform random variate generation by the vertical strip method," European Journal of Operational Research, Elsevier, vol. 142(3), pages 595-609, November.
    14. Eibich, Peter & Ziebarth, Nicolas, 2014. "Examining the Structure of Spatial Health Effects in Germany Using Hierarchical Bayes Models," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 49, pages 305-320.
    15. Samantha Leorato & Maura Mezzetti, 2015. "Spatial Panel Data Model with error dependence: a Bayesian Separable Covariance Approach," CEIS Research Paper 338, Tor Vergata University, CEIS, revised 09 Apr 2015.
    16. Sabel, Clive Eric & Wilson, Jeff Gaines & Kingham, Simon & Tisch, Catherine & Epton, Mike, 2007. "Spatial implications of covariate adjustment on patterns of risk: Respiratory hospital admissions in Christchurch, New Zealand," Social Science & Medicine, Elsevier, vol. 65(1), pages 43-59, July.
    17. Shreosi Sanyal & Thierry Rochereau & Cara Nichole Maesano & Laure Com-Ruelle & Isabella Annesi-Maesano, 2018. "Long-Term Effect of Outdoor Air Pollution on Mortality and Morbidity: A 12-Year Follow-Up Study for Metropolitan France," IJERPH, MDPI, vol. 15(11), pages 1-8, November.
    18. Mayer Alvo & Jingrui Mu, 2023. "COVID-19 Data Analysis Using Bayesian Models and Nonparametric Geostatistical Models," Mathematics, MDPI, vol. 11(6), pages 1-13, March.
    19. Gil, Guilherme Dôco Roberti & Costa, Marcelo Azevedo & Lopes, Ana Lúcia Miranda & Mayrink, Vinícius Diniz, 2017. "Spatial statistical methods applied to the 2015 Brazilian energy distribution benchmarking model: Accounting for unobserved determinants of inefficiencies," Energy Economics, Elsevier, vol. 64(C), pages 373-383.
    20. Z. Rezaei Ghahroodi & M. Ganjali, 2013. "A Bayesian approach for analysing longitudinal nominal outcomes using random coefficients transitional generalized logit model: an application to the labour force survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(7), pages 1425-1445, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:58:y:2002:i:4:p:898-905. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.