IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v164y2001i1p155-174.html
   My bibliography  Save this article

Ecological regression analysis of environmental benzene exposure and childhood leukaemia: sensitivity to data inaccuracies, geographical scale and ecological bias

Author

Listed:
  • Nicky Best
  • Samantha Cockings
  • James Bennett
  • Jon Wakefield
  • Paul Elliott

Abstract

Benzene is classified as a group 1 human carcinogen by the International Agency for Research on Cancer, and it is now accepted that occupational exposure is associated with an increased risk of various leukaemias. However, occupational exposure accounts for less than 1% of all benzene exposures, the major sources being cigarette smoking and vehicle exhaust emissions. Whether such low level exposures to environmental benzene are also associated with the risk of leukaemia is currently not known. In this study, we investigate the relationship between benzene emissions arising from outdoor sources (predominantly road traffic and petrol stations) and the incidence of childhood leukaemia in Greater London. An ecological design was used because of the rarity of the disease, the difficulty of obtaining individual level measurements of benzene exposure and the availability of data. However, some methodological difficulties were encountered, including problems of case registration errors, the choice of geographical areas for analysis, exposure measurement errors and ecological bias. We use a Bayesian hierarchical modelling framework to address these issues, and we investigate the sensitivity of our inference to various modelling assumptions.

Suggested Citation

  • Nicky Best & Samantha Cockings & James Bennett & Jon Wakefield & Paul Elliott, 2001. "Ecological regression analysis of environmental benzene exposure and childhood leukaemia: sensitivity to data inaccuracies, geographical scale and ecological bias," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 164(1), pages 155-174.
  • Handle: RePEc:bla:jorssa:v:164:y:2001:i:1:p:155-174
    DOI: 10.1111/1467-985X.00194
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1467-985X.00194
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1467-985X.00194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Irene L. Hudson & Linda Moore & Eric J. Beh & David G. Steel, 2010. "Ecological inference techniques: an empirical evaluation using data describing gender and voter turnout at New Zealand elections, 1893–1919," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(1), pages 185-213, January.
    2. Gillian A. Lancaster & Mick Green & Steven Lane, 2006. "Reducing bias in ecological studies: an evaluation of different methodologies," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 169(4), pages 681-700, October.
    3. Takahiro Yoshida & Morito Tsutsumi, 2018. "On the effects of spatial relationships in spatial compositional multivariate models," Letters in Spatial and Resource Sciences, Springer, vol. 11(1), pages 57-70, March.
    4. repec:jss:jstsof:12:i03 is not listed on IDEAS
    5. Sturtz, Sibylle & Ligges, Uwe & Gelman, Andrew, 2005. "R2WinBUGS: A Package for Running WinBUGS from R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 12(i03).
    6. Christopher Jackson & And Nicky Best & Sylvia Richardson, 2008. "Hierarchical related regression for combining aggregate and individual data in studies of socio‐economic disease risk factors," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(1), pages 159-178, January.
    7. Sabel, Clive Eric & Wilson, Jeff Gaines & Kingham, Simon & Tisch, Catherine & Epton, Mike, 2007. "Spatial implications of covariate adjustment on patterns of risk: Respiratory hospital admissions in Christchurch, New Zealand," Social Science & Medicine, Elsevier, vol. 65(1), pages 43-59, July.
    8. Enora Belz & Arthur Charpentier, 2019. "Aggregated Data and Compositional Variables: Methodological Note [Données Agrégées et Variables Compositionnelles : Note Méthodologique]," Working Papers hal-02097031, HAL.
    9. Katherine A. Guthrie & Lianne Sheppard & Jon Wakefield, 2002. "A Hierarchical Aggregate Data Model with Spatially Correlated Disease Rates," Biometrics, The International Biometric Society, vol. 58(4), pages 898-905, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:164:y:2001:i:1:p:155-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.