IDEAS home Printed from https://ideas.repec.org/a/pal/jorsoc/v63y2012i11p1556-1565.html
   My bibliography  Save this article

Predicting ambulance demand using singular spectrum analysis

Author

Listed:
  • J L Vile

    (Cardiff University, Cardiff, UK)

  • J W Gillard

    (Cardiff University, Cardiff, UK)

  • P R Harper

    (Cardiff University, Cardiff, UK)

  • V A Knight

    (Cardiff University, Cardiff, UK)

Abstract

This paper demonstrates techniques to generate accurate predictions of demand exerted upon the Emergency Medical Services (EMS) using data provided by the Welsh Ambulance Service Trust (WAST). The aim is to explore new methods to produce accurate forecasts that can be subsequently embedded into current OR methodologies to optimise resource allocation of vehicles and staff, and allow rapid response to potentially life-threatening emergencies. Our analysis explores a relatively new non-parametric technique for time series analysis known as Singular Spectrum Analysis (SSA). We explain the theory of SSA and evaluate the performance of this approach by comparing the results with those produced by conventional time series methods. We show that in addition to being more flexible in approach, SSA produces superior longer-term forecasts (which are especially helpful for EMS planning), and comparable shorter-term forecasts to well established methods.

Suggested Citation

  • J L Vile & J W Gillard & P R Harper & V A Knight, 2012. "Predicting ambulance demand using singular spectrum analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 63(11), pages 1556-1565, November.
  • Handle: RePEc:pal:jorsoc:v:63:y:2012:i:11:p:1556-1565
    as

    Download full text from publisher

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n11/pdf/jors2011160a.pdf
    File Function: Link to full text PDF
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: http://www.palgrave-journals.com/jors/journal/v63/n11/full/jors2011160a.html
    File Function: Link to full text HTML
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Benjamin M. Taylor, 2017. "Spatial modelling of emergency service response times," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 180(2), pages 433-453, February.
    2. Hyunjin Lee & Taesik Lee, 2021. "Demand modelling for emergency medical service system with multiple casualties cases: k-inflated mixture regression model," Flexible Services and Manufacturing Journal, Springer, vol. 33(4), pages 1090-1115, December.
    3. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    4. Abreu, Paulo & Santos, Daniel & Barbosa-Povoa, Ana, 2023. "Data-driven forecasting for operational planning of emergency medical services," Socio-Economic Planning Sciences, Elsevier, vol. 86(C).
    5. Zhengyi Zhou & David S. Matteson & Dawn B. Woodard & Shane G. Henderson & Athanasios C. Micheas, 2015. "A Spatio-Temporal Point Process Model for Ambulance Demand," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(509), pages 6-15, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pal:jorsoc:v:63:y:2012:i:11:p:1556-1565. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.palgrave-journals.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.