IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v69y2020ics0038012118303616.html
   My bibliography  Save this article

Real options valuation of an IoT based healthcare device with interval Type-2 fuzzy numbers

Author

Listed:
  • Tolga, A. Cagri

Abstract

Medical devices have attained increasing importance in diagnosis and treatment in the healthcare system in recent years due to technological advancements. Along with this progress, the IoT property in these devices reduces the supply time, which is very critical in increasing their up periods. Often, certain medical devices used in treatment require a major portion of the investment. Such huge capital goods are generally irreversible investments. Depending on the strategic view and irreversibility, medical device assessment requires a sophisticated evaluation method called real options. However, there are many ambiguities during the investment period and while gathering the data for the evaluation. Interval type-2 fuzzy logic fits like a glove for such vague conditions and lack of data. In this study, an interval type-2 fuzzy set integrated real option analysis is offered for medical treatment device evaluation. Possibilistic mean value and possibilistic variance of interval type-2 fuzzy sets are found for the purpose of the real options analysis. This offered method is applied to a real case in a healthcare system. Sensitivity analysis provides many different viewpoints. At the end of the procedure, the institution decides whether to perform the investment now or one year later.

Suggested Citation

  • Tolga, A. Cagri, 2020. "Real options valuation of an IoT based healthcare device with interval Type-2 fuzzy numbers," Socio-Economic Planning Sciences, Elsevier, vol. 69(C).
  • Handle: RePEc:eee:soceps:v:69:y:2020:i:c:s0038012118303616
    DOI: 10.1016/j.seps.2019.02.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012118303616
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2019.02.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rosella Levaggi & Moretto Michele, 2008. "Investment In Hospital Care Technology Under Different Purchasing Rules: A Real Option Approach," Bulletin of Economic Research, Wiley Blackwell, vol. 60(2), pages 159-181, April.
    2. Joyce Craig & Louise Carr & John Hutton & Julie Glanville & Cynthia Iglesias & Andrew Sims, 2015. "A Review of the Economic Tools for Assessing New Medical Devices," Applied Health Economics and Health Policy, Springer, vol. 13(1), pages 15-27, February.
    3. Robert C. Merton, 2005. "Theory of rational option pricing," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 8, pages 229-288, World Scientific Publishing Co. Pte. Ltd..
    4. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    5. Chen, Ting-Yu & Chang, Chien-Hung & Rachel Lu, Jui-fen, 2013. "The extended QUALIFLEX method for multiple criteria decision analysis based on interval type-2 fuzzy sets and applications to medical decision making," European Journal of Operational Research, Elsevier, vol. 226(3), pages 615-625.
    6. T Sloan, 2010. "First, do no harm? A framework for evaluating new versus reprocessed medical devices," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(2), pages 191-201, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Cheng & Gong, Xiaomin & Zhang, Jingshu & Chen, Zhiwei, 2023. "Dynamic portfolio allocation for financial markets: A perspective of competitive-cum-compensatory strategy," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 84(C).
    2. Jorge de Andrés-Sánchez, 2023. "Fuzzy Random Option Pricing in Continuous Time: A Systematic Review and an Extension of Vasicek’s Equilibrium Model of the Term Structure," Mathematics, MDPI, vol. 11(11), pages 1-21, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kau, James B. & Keenan, Donald C., 1999. "Patterns of rational default," Regional Science and Urban Economics, Elsevier, vol. 29(6), pages 765-785, November.
    2. Carol Alexandra & Leonardo M. Nogueira, 2005. "Optimal Hedging and Scale Inavriance: A Taxonomy of Option Pricing Models," ICMA Centre Discussion Papers in Finance icma-dp2005-10, Henley Business School, University of Reading, revised Nov 2005.
    3. Weihan Li & Jin E. Zhang & Xinfeng Ruan & Pakorn Aschakulporn, 2024. "An empirical study on the early exercise premium of American options: Evidence from OEX and XEO options," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(7), pages 1117-1153, July.
    4. Jun, Doobae & Ku, Hyejin, 2015. "Static hedging of chained-type barrier options," The North American Journal of Economics and Finance, Elsevier, vol. 33(C), pages 317-327.
    5. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    6. Vorst, A. C. F., 1988. "Option Pricing And Stochastic Processes," Econometric Institute Archives 272366, Erasmus University Rotterdam.
    7. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    8. Boyarchenko, Svetlana & Levendorskii[caron], Sergei, 2007. "Optimal stopping made easy," Journal of Mathematical Economics, Elsevier, vol. 43(2), pages 201-217, February.
    9. Robert C. Merton, 2006. "Paul Samuelson and Financial Economics," The American Economist, Sage Publications, vol. 50(2), pages 9-31, October.
    10. Ammann, Manuel & Kind, Axel & Wilde, Christian, 2003. "Are convertible bonds underpriced? An analysis of the French market," Journal of Banking & Finance, Elsevier, vol. 27(4), pages 635-653, April.
    11. Sergio Zúñiga, 1999. "Modelos de Tasas de Interés en Chile: Una Revisión," Latin American Journal of Economics-formerly Cuadernos de Economía, Instituto de Economía. Pontificia Universidad Católica de Chile., vol. 36(108), pages 875-893.
    12. Zhijian (James) Huang & Yuchen Luo, 2016. "Revisiting Structural Modeling of Credit Risk—Evidence from the Credit Default Swap (CDS) Market," JRFM, MDPI, vol. 9(2), pages 1-20, May.
    13. José Martins & Rui Cunha Marques & Carlos Oliveira Cruz & Álvaro Fonseca, 2017. "Flexibility in planning and development of a container terminal: an application of an American-style call option," Transportation Planning and Technology, Taylor & Francis Journals, vol. 40(7), pages 828-840, October.
    14. Marcelo F. Perillo, 2021. "Valuación de Títulos de Deuda Indexados al Comportamiento de un Índice Accionario: Un Modelo sin Riesgo de Crédito," CEMA Working Papers: Serie Documentos de Trabajo. 784, Universidad del CEMA.
    15. Kartono, Agus & Solekha, Siti & Sumaryada, Tony & Irmansyah,, 2021. "Foreign currency exchange rate prediction using non-linear Schrödinger equations with economic fundamental parameters," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    16. Jochen Bigus, 2002. "Investitionsanreize, Koalitionsverhalten und Gläubigerkonflikte," Schmalenbach Journal of Business Research, Springer, vol. 54(4), pages 317-342, June.
    17. Kim, Amy M. & Li, Huanan, 2020. "Incorporating the impacts of climate change in transportation infrastructure decision models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 271-287.
    18. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    19. Wang, Jun & Liang, Jin-Rong & Lv, Long-Jin & Qiu, Wei-Yuan & Ren, Fu-Yao, 2012. "Continuous time Black–Scholes equation with transaction costs in subdiffusive fractional Brownian motion regime," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 750-759.
    20. George W. Kutner & James A. Seifert, 1989. "The Valuation of Mortgage Loan Commitments Using Option Pricing Estimates," Journal of Real Estate Research, American Real Estate Society, vol. 4(2), pages 13-20.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:69:y:2020:i:c:s0038012118303616. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.