IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v73y2021icp139-151.html
   My bibliography  Save this article

The realized volatility of commodity futures: Interconnectedness and determinants#

Author

Listed:
  • Bouri, Elie
  • Lucey, Brian
  • Saeed, Tareq
  • Vo, Xuan Vinh

Abstract

Using high frequency data and connectedness measures based on a time-varying parameter vector autoregression (TVP-VAR) model, we study dynamic connectedness among the realized volatility of 15 commodity futures (Gold, Heating oil, Light crude oil, Natural gas, Copper, Platinum, Cocoa, Coffee, Corn, Cotton, Orange Juice, Soybean, Soybean meal, Sugar, and Wheat) from September 22, 2008 to May 28, 2020. The results show strong and moderate levels of volatility connectedness among energy and metals and moderate connectedness levels within the group of agricultural commodities. Cross-commodity connectedness can explain a large portion of volatility connectedness in some cases, highlighting the importance of conducting realized volatility connectedness within a model allowing realized volatilities to be endogenously and simultaneously determined. Connectedness is robust to alternative specifications and varies with time. It is mostly driven by macroeconomic variables and uncertainty, including the term spread of interest rates and real economic activity. However, the analysis shows that some of the drivers of connectedness differ between upper and lower quantiles.

Suggested Citation

  • Bouri, Elie & Lucey, Brian & Saeed, Tareq & Vo, Xuan Vinh, 2021. "The realized volatility of commodity futures: Interconnectedness and determinants#," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 139-151.
  • Handle: RePEc:eee:reveco:v:73:y:2021:i:c:p:139-151
    DOI: 10.1016/j.iref.2021.01.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S105905602100006X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2021.01.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ladislav Krištoufek & Karel Janda & David Zilberman, 2012. "Correlations between biofuels and related commodities: A taxonomy perspective," Working Papers IES 2012/15, Charles University Prague, Faculty of Social Sciences, Institute of Economic Studies, revised Jun 2012.
    2. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    3. Giot, Pierre & Laurent, Sebastien, 2004. "Modelling daily Value-at-Risk using realized volatility and ARCH type models," Journal of Empirical Finance, Elsevier, vol. 11(3), pages 379-398, June.
    4. Cornelis Gardebroek & Manuel A. Hernandez & Miguel Robles, 2016. "Market interdependence and volatility transmission among major crops," Agricultural Economics, International Association of Agricultural Economists, vol. 47(2), pages 141-155, March.
    5. Bouri, Elie & Cepni, Oguzhan & Gabauer, David & Gupta, Rangan, 2021. "Return connectedness across asset classes around the COVID-19 outbreak," International Review of Financial Analysis, Elsevier, vol. 73(C).
    6. Jian Yang & R. Brian Balyeat & David J. Leatham, 2005. "Futures Trading Activity and Commodity Cash Price Volatility," Journal of Business Finance & Accounting, Wiley Blackwell, vol. 32(1‐2), pages 297-323, January.
    7. Diebold, Francis X. & Yılmaz, Kamil, 2014. "On the network topology of variance decompositions: Measuring the connectedness of financial firms," Journal of Econometrics, Elsevier, vol. 182(1), pages 119-134.
    8. Bakas, Dimitrios & Triantafyllou, Athanasios, 2018. "The impact of uncertainty shocks on the volatility of commodity prices," Journal of International Money and Finance, Elsevier, vol. 87(C), pages 96-111.
    9. Creti, Anna & Joëts, Marc & Mignon, Valérie, 2013. "On the links between stock and commodity markets' volatility," Energy Economics, Elsevier, vol. 37(C), pages 16-28.
    10. Yu-Chin Chen & Kenneth S. Rogoff & Barbara Rossi, 2010. "Can Exchange Rates Forecast Commodity Prices?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 125(3), pages 1145-1194.
    11. Antonakakis, Nikolaos & Gabauer, David & Gupta, Rangan & Plakandaras, Vasilios, 2018. "Dynamic connectedness of uncertainty across developed economies: A time-varying approach," Economics Letters, Elsevier, vol. 166(C), pages 63-75.
    12. Kyle Jurado & Sydney C. Ludvigson & Serena Ng, 2015. "Measuring Uncertainty," American Economic Review, American Economic Association, vol. 105(3), pages 1177-1216, March.
    13. A. G. Malliaris & Jorge L. Urrutia, 1996. "Linkages between agricultural commodity futures contracts," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 16(5), pages 595-609, August.
    14. repec:dau:papers:123456789/14980 is not listed on IDEAS
    15. Bubák, Vít & Kocenda, Evzen & Zikes, Filip, 2011. "Volatility transmission in emerging European foreign exchange markets," Journal of Banking & Finance, Elsevier, vol. 35(11), pages 2829-2841, November.
    16. Guglielmo Maria Caporale & Fabio Spagnolo & Nicola Spagnolo, 2017. "Macro News and Commodity Returns," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 22(1), pages 68-80, January.
    17. Anthony Paris, 2018. "On the link between oil and agricultural commodity prices: Do biofuels matter?," International Economics, CEPII research center, issue 155, pages 48-60.
    18. Saghaian, Sayed & Nemati, Mehdi & Walters, Cory & Chen, Bo, 2018. "Asymmetric Price Volatility Transmission between U.S. Biofuel, Corn, and Oil Markets," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 43(1), January.
    19. Andersen, Torben G. & Dobrev, Dobrislav & Schaumburg, Ernst, 2012. "Jump-robust volatility estimation using nearest neighbor truncation," Journal of Econometrics, Elsevier, vol. 169(1), pages 75-93.
    20. Roehner,Bertrand M., 2002. "Patterns of Speculation," Cambridge Books, Cambridge University Press, number 9780521802635, January.
    21. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2016. "Volatility spillovers across stock index futures in Asian markets: Evidence from range volatility estimators," Finance Research Letters, Elsevier, vol. 17(C), pages 158-166.
    22. Liu, Lily Y. & Patton, Andrew J. & Sheppard, Kevin, 2015. "Does anything beat 5-minute RV? A comparison of realized measures across multiple asset classes," Journal of Econometrics, Elsevier, vol. 187(1), pages 293-311.
    23. Bakas, Dimitrios & Triantafyllou, Athanasios, 2020. "Commodity price volatility and the economic uncertainty of pandemics," Economics Letters, Elsevier, vol. 193(C).
    24. Ciaian, Pavel & Kancs, d'Artis, 2011. "Interdependencies in the energy-bioenergy-food price systems: A cointegration analysis," Resource and Energy Economics, Elsevier, vol. 33(1), pages 326-348, January.
    25. Zhang, Hui Jun & Dufour, Jean-Marie & Galbraith, John W., 2016. "Exchange rates and commodity prices: Measuring causality at multiple horizons," Journal of Empirical Finance, Elsevier, vol. 36(C), pages 100-120.
    26. Scott R. Baker & Nicholas Bloom & Steven J. Davis, 2016. "Measuring Economic Policy Uncertainty," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 131(4), pages 1593-1636.
    27. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    28. Yan‐ran Ma & Qiang Ji & Jiaofeng Pan, 2019. "Oil financialization and volatility forecast: Evidence from multidimensional predictors," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 38(6), pages 564-581, September.
    29. Ngene, Geoffrey & Post, Jordin A. & Mungai, Ann N., 2018. "Volatility and shock interactions and risk management implications: Evidence from the U.S. and frontier markets," Emerging Markets Review, Elsevier, vol. 37(C), pages 181-198.
    30. Serra, Teresa, 2011. "Volatility spillovers between food and energy markets: A semiparametric approach," Energy Economics, Elsevier, vol. 33(6), pages 1155-1164.
    31. Kristoufek, Ladislav & Janda, Karel & Zilberman, David, 2012. "Correlations between biofuels and related commodities before and during the food crisis: A taxonomy perspective," Energy Economics, Elsevier, vol. 34(5), pages 1380-1391.
    32. Ine Van Robays, 2016. "Macroeconomic Uncertainty and Oil Price Volatility," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 78(5), pages 671-693, October.
    33. Batten, Jonathan A. & Ciner, Cetin & Lucey, Brian M., 2010. "The macroeconomic determinants of volatility in precious metals markets," Resources Policy, Elsevier, vol. 35(2), pages 65-71, June.
    34. Bouri, Elie & Lucey, Brian & Roubaud, David, 2020. "Dynamics and determinants of spillovers across the option-implied volatilities of US equities," The Quarterly Review of Economics and Finance, Elsevier, vol. 75(C), pages 257-264.
    35. López Cabrera, Brenda & Schulz, Franziska, 2016. "Volatility linkages between energy and agricultural commodity prices," Energy Economics, Elsevier, vol. 54(C), pages 190-203.
    36. Suleyman Basak & Anna Pavlova, 2016. "A Model of Financialization of Commodities," Journal of Finance, American Finance Association, vol. 71(4), pages 1511-1556, August.
    37. Walters, Cory, 2018. "Price Volatility Transmission between U.S. Biofuel, Corn, and Oil Markets," Cornhusker Economics 307037, University of Nebraska-Lincoln, Department of Agricultural Economics.
    38. Algieri, Bernardina & Leccadito, Arturo, 2017. "Assessing contagion risk from energy and non-energy commodity markets," Energy Economics, Elsevier, vol. 62(C), pages 312-322.
    39. Yarovaya, Larisa & Brzeszczyński, Janusz & Lau, Chi Keung Marco, 2016. "Intra- and inter-regional return and volatility spillovers across emerging and developed markets: Evidence from stock indices and stock index futures," International Review of Financial Analysis, Elsevier, vol. 43(C), pages 96-114.
    40. Ji, Qiang & Bouri, Elie & Roubaud, David & Shahzad, Syed Jawad Hussain, 2018. "Risk spillover between energy and agricultural commodity markets: A dependence-switching CoVaR-copula model," Energy Economics, Elsevier, vol. 75(C), pages 14-27.
    41. Nikolaos Antonakakis & Ioannis Chatziantoniou & David Gabauer, 2020. "Refined Measures of Dynamic Connectedness based on Time-Varying Parameter Vector Autoregressions," JRFM, MDPI, vol. 13(4), pages 1-23, April.
    42. Wei, Yu, 2012. "Forecasting volatility of fuel oil futures in China: GARCH-type, SV or realized volatility models?," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5546-5556.
    43. Scotti, Chiara, 2016. "Surprise and uncertainty indexes: Real-time aggregation of real-activity macro-surprises," Journal of Monetary Economics, Elsevier, vol. 82(C), pages 1-19.
    44. Gabauer, David & Gupta, Rangan, 2018. "On the transmission mechanism of country-specific and international economic uncertainty spillovers: Evidence from a TVP-VAR connectedness decomposition approach," Economics Letters, Elsevier, vol. 171(C), pages 63-71.
    45. Awartani, Basel & Aktham, Maghyereh & Cherif, Guermat, 2016. "The connectedness between crude oil and financial markets: Evidence from implied volatility indices," Journal of Commodity Markets, Elsevier, vol. 4(1), pages 56-69.
    46. Roache, Shaun K. & Rossi, Marco, 2010. "The effects of economic news on commodity prices," The Quarterly Review of Economics and Finance, Elsevier, vol. 50(3), pages 377-385, August.
    47. Mo, Di & Gupta, Rakesh & Li, Bin & Singh, Tarlok, 2018. "The macroeconomic determinants of commodity futures volatility: Evidence from Chinese and Indian markets," Economic Modelling, Elsevier, vol. 70(C), pages 543-560.
    48. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    49. Alam, Md. Samsul & Shahzad, Syed Jawad Hussain & Ferrer, Román, 2019. "Causal flows between oil and forex markets using high-frequency data: Asymmetries from good and bad volatility," Energy Economics, Elsevier, vol. 84(C).
    50. Marco Del Negro & Giorgio E. Primiceri, 2015. "Time Varying Structural Vector Autoregressions and Monetary Policy: A Corrigendum," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 82(4), pages 1342-1345.
    51. Bouri, Elie & Gupta, Rangan & Hosseini, Seyedmehdi & Lau, Chi Keung Marco, 2018. "Does global fear predict fear in BRICS stock markets? Evidence from a Bayesian Graphical Structural VAR model," Emerging Markets Review, Elsevier, vol. 34(C), pages 124-142.
    52. Hu, Sunyang & Gu, Zongyuan & Wang, Yifeng & Zhang, Xiaolei, 2019. "An analysis of the clustering effect of a jump risk complex network in the Chinese stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 622-630.
    53. Maghyereh, Aktham I. & Awartani, Basel & Bouri, Elie, 2016. "The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes," Energy Economics, Elsevier, vol. 57(C), pages 78-93.
    54. Rehman, Mobeen Ur & Bouri, Elie & Eraslan, Veysel & Kumar, Satish, 2019. "Energy and non-energy commodities: An asymmetric approach towards portfolio diversification in the commodity market," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    55. Belousova, Julia & Dorfleitner, Gregor, 2012. "On the diversification benefits of commodities from the perspective of euro investors," Journal of Banking & Finance, Elsevier, vol. 36(9), pages 2455-2472.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hedi Ben Haddad & Imed Mezghani & Abdessalem Gouider, 2021. "The Dynamic Spillover Effects of Macroeconomic and Financial Uncertainty on Commodity Markets Uncertainties," Economies, MDPI, vol. 9(2), pages 1-22, June.
    2. Balcilar, Mehmet & Gabauer, David & Umar, Zaghum, 2021. "Crude Oil futures contracts and commodity markets: New evidence from a TVP-VAR extended joint connectedness approach," Resources Policy, Elsevier, vol. 73(C).
    3. Bouri, Elie & Lei, Xiaojie & Xu, Yahua & Zhang, Hongwei, 2023. "Connectedness in implied higher-order moments of precious metals and energy markets," Energy, Elsevier, vol. 263(PB).
    4. Lyu, Yongjian & Wei, Yu & Hu, Yingyi & Yang, Mo, 2021. "Good volatility, bad volatility and economic uncertainty: Evidence from the crude oil futures market," Energy, Elsevier, vol. 222(C).
    5. Akyildirim, Erdinc & Cepni, Oguzhan & Pham, Linh & Uddin, Gazi Salah, 2022. "How connected is the agricultural commodity market to the news-based investor sentiment?," Energy Economics, Elsevier, vol. 113(C).
    6. Lyu, Yongjian & Yi, Heling & Wei, Yu & Yang, Mo, 2021. "Revisiting the role of economic uncertainty in oil price fluctuations: Evidence from a new time-varying oil market model," Economic Modelling, Elsevier, vol. 103(C).
    7. Makkonen, Adam & Vallström, Daniel & Uddin, Gazi Salah & Rahman, Md Lutfur & Haddad, Michel Ferreira Cardia, 2021. "The effect of temperature anomaly and macroeconomic fundamentals on agricultural commodity futures returns," Energy Economics, Elsevier, vol. 100(C).
    8. Umar, Zaghum & Aziz, Saqib & Tawil, Dima, 2021. "The impact of COVID-19 induced panic on the return and volatility of precious metals," Journal of Behavioral and Experimental Finance, Elsevier, vol. 31(C).
    9. Bakas, Dimitrios & Triantafyllou, Athanasios, 2018. "The impact of uncertainty shocks on the volatility of commodity prices," Journal of International Money and Finance, Elsevier, vol. 87(C), pages 96-111.
    10. Pham, Linh & Kamal, Javed Bin, 2024. "Blessings or curse: How do media climate change concerns affect commodity tail risk spillovers?," Journal of Commodity Markets, Elsevier, vol. 34(C).
    11. Gaete, Michael & Herrera, Rodrigo, 2023. "Diversification benefits of commodities in portfolio allocation: A dynamic factor copula approach," Journal of Commodity Markets, Elsevier, vol. 32(C).
    12. Scarcioffolo, Alexandre R. & Etienne, Xiaoli L., 2021. "Regime-switching energy price volatility: The role of economic policy uncertainty," International Review of Economics & Finance, Elsevier, vol. 76(C), pages 336-356.
    13. Cui, Jinxin & Maghyereh, Aktham & Goh, Mark & Zou, Huiwen, 2022. "Risk spillovers and time-varying links between international oil and China’s commodity futures markets: Fresh evidence from the higher-order moments," Energy, Elsevier, vol. 238(PB).
    14. Śmiech, Sławomir & Papież, Monika & Shahzad, Syed Jawad Hussain, 2020. "Spillover among financial, industrial and consumer uncertainties. The case of EU member states," International Review of Financial Analysis, Elsevier, vol. 70(C).
    15. Śmiech, Sławomir & Papież, Monika & Fijorek, Kamil & Dąbrowski, Marek A., 2019. "What drives food price volatility? Evidence based on a generalized VAR approach applied to the food, financial and energy markets," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 13, pages 1-32.
    16. Hu, Min & Zhang, Dayong & Ji, Qiang & Wei, Lijian, 2020. "Macro factors and the realized volatility of commodities: A dynamic network analysis," Resources Policy, Elsevier, vol. 68(C).
    17. Mokni, Khaled & Al-Shboul, Mohammed & Assaf, Ata, 2021. "Economic policy uncertainty and dynamic spillover among precious metals under market conditions: Does COVID-19 have any effects?," Resources Policy, Elsevier, vol. 74(C).
    18. Luo, Jiawen & Ji, Qiang, 2018. "High-frequency volatility connectedness between the US crude oil market and China's agricultural commodity markets," Energy Economics, Elsevier, vol. 76(C), pages 424-438.
    19. Maitra, Debasish & Guhathakurta, Kousik & Kang, Sang Hoon, 2021. "The good, the bad and the ugly relation between oil and commodities: An analysis of asymmetric volatility connectedness and portfolio implications," Energy Economics, Elsevier, vol. 94(C).
    20. Wang, Gang-Jin & Xie, Chi & Zhao, Longfeng & Jiang, Zhi-Qiang, 2018. "Volatility connectedness in the Chinese banking system: Do state-owned commercial banks contribute more?," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 57(C), pages 205-230.

    More about this item

    Keywords

    Commodity futures; Realized volatility; Connectedness measures; Spillover index; Determinants of connectedness;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:73:y:2021:i:c:p:139-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.