IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v62y2022ics027553192200071x.html
   My bibliography  Save this article

Can investors’ informed trading predict cryptocurrency returns? Evidence from machine learning

Author

Listed:
  • Wang, Yaqi
  • Wang, Chunfeng
  • Sensoy, Ahmet
  • Yao, Shouyu
  • Cheng, Feiyang

Abstract

As an emerging asset, cryptocurrencies have attracted more and more attention from investors and researchers in recent years. With the gradual convergence of the investors in cryptocurrency and traditional financial markets, the research on investor trading behavior from the perspective of microstructure has become increasingly important in cryptocurrency market. In this paper, we study whether investors’ informed trading behavior can significantly predict cryptocurrency returns. We use various machine learning algorithms to verify the contribution of informed trading to the predictability of cryptocurrency returns. The results show that informed trading plays a role in the prediction of some individual cryptocurrency returns, but it cannot significantly improve the prediction accuracy in an average sense of the whole market. The lack of market supervision of cryptocurrency market may be the main factor for relatively low efficiency of this market, and policymakers need to pay attention to it.

Suggested Citation

  • Wang, Yaqi & Wang, Chunfeng & Sensoy, Ahmet & Yao, Shouyu & Cheng, Feiyang, 2022. "Can investors’ informed trading predict cryptocurrency returns? Evidence from machine learning," Research in International Business and Finance, Elsevier, vol. 62(C).
  • Handle: RePEc:eee:riibaf:v:62:y:2022:i:c:s027553192200071x
    DOI: 10.1016/j.ribaf.2022.101683
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S027553192200071X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2022.101683?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J Christopher Westland, 2021. "Trade informativeness and liquidity in Bitcoin markets," PLOS ONE, Public Library of Science, vol. 16(8), pages 1-14, August.
    2. Chen, Zhenhua & Liu, Zhenya & Teka, Hanen & Zhang, Yifan, 2022. "Smart money in China's A-share market: Evidence from big data," Research in International Business and Finance, Elsevier, vol. 61(C).
    3. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," Journal of Financial Economics, Elsevier, vol. 135(2), pages 293-319.
    4. Lien, Donald & Hung, Pi-Hsia & Hung, I-Chun, 2019. "Order price clustering, size clustering, and stock price movements: Evidence from the Taiwan Stock Exchange," Journal of Empirical Finance, Elsevier, vol. 52(C), pages 149-177.
    5. Hung, Pi-Hsia & Lien, Donald, 2019. "Trading aggressiveness, order execution quality, and stock price movements: Evidence from the Taiwan stock exchange," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 60(C), pages 231-251.
    6. Chu, Gang & Li, Xiao & Zhang, Yongjie, 2022. "Information demand and net selling around earnings announcement," Research in International Business and Finance, Elsevier, vol. 59(C).
    7. Ing, Julie, 2020. "Adverse selection, commitment and exhaustible resource taxation," Resource and Energy Economics, Elsevier, vol. 61(C).
    8. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating cryptocurrency prices using machine learning," Papers 1805.08550, arXiv.org, revised Nov 2018.
    9. Nguyen, Thai Vu Hong & Nguyen, Binh Thanh & Nguyen, Kien Son & Pham, Huy, 2019. "Asymmetric monetary policy effects on cryptocurrency markets," Research in International Business and Finance, Elsevier, vol. 48(C), pages 335-339.
    10. Yao, Shouyu & Wang, Chunfeng & Cui, Xin & Fang, Zhenming, 2019. "Idiosyncratic skewness, gambling preference, and cross-section of stock returns: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 464-483.
    11. Akhtaruzzaman, Md & Boubaker, Sabri & Nguyen, Duc Khuong & Rahman, Molla Ramizur, 2022. "Systemic risk-sharing framework of cryptocurrencies in the COVID–19 crisis," Finance Research Letters, Elsevier, vol. 47(PB).
    12. Baur, Dirk G. & Dimpfl, Thomas, 2018. "Asymmetric volatility in cryptocurrencies," Economics Letters, Elsevier, vol. 173(C), pages 148-151.
    13. Helder Sebastião & Pedro Godinho, 2021. "Forecasting and trading cryptocurrencies with machine learning under changing market conditions," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 7(1), pages 1-30, December.
    14. Julie Ing, 2020. "Adverse selection, commitment and exhaustible resource taxation," Post-Print halshs-02885885, HAL.
    15. Jying-Nan Wang & Hung-Chun Liu & Shuang Zhang & Yuan-Teng Hsu, 2021. "How does the informed trading impact Bitcoin returns and volatility?," Applied Economics, Taylor & Francis Journals, vol. 53(28), pages 3223-3233, June.
    16. Feng, Wenjun & Wang, Yiming & Zhang, Zhengjun, 2018. "Informed trading in the Bitcoin market," Finance Research Letters, Elsevier, vol. 26(C), pages 63-70.
    17. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    18. Makarov, Igor & Schoar, Antoinette, 2020. "Trading and arbitrage in cryptocurrency markets," LSE Research Online Documents on Economics 100409, London School of Economics and Political Science, LSE Library.
    19. Jia, Boxiang & Goodell, John W. & Shen, Dehua, 2022. "Momentum or reversal: Which is the appropriate third factor for cryptocurrencies?," Finance Research Letters, Elsevier, vol. 45(C).
    20. Conlon, Thomas & Corbet, Shaen & McGee, Richard J., 2020. "Are cryptocurrencies a safe haven for equity markets? An international perspective from the COVID-19 pandemic," Research in International Business and Finance, Elsevier, vol. 54(C).
    21. Ding, Mingfa & Shen, Mi & Suardi, Sandy, 2022. "Blockholders, tradability and information asymmetry: Evidence from Chinese listed firms," Research in International Business and Finance, Elsevier, vol. 60(C).
    22. Yao, Shouyu & Wang, Chunfeng & Fang, Zhenming & Chiao, Chaoshin, 2021. "MAX is not the max under the interference of daily price limits: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 348-369.
    23. Goodell, John W. & Goutte, Stephane, 2021. "Diversifying equity with cryptocurrencies during COVID-19," International Review of Financial Analysis, Elsevier, vol. 76(C).
    24. Cheng, Feiyang & Chiao, Chaoshin & Wang, Chunfeng & Fang, Zhenming & Yao, Shouyu, 2021. "Does retail investor attention improve stock liquidity? A dynamic perspective," Economic Modelling, Elsevier, vol. 94(C), pages 170-183.
    25. C. Baek & M. Elbeck, 2015. "Bitcoins as an investment or speculative vehicle? A first look," Applied Economics Letters, Taylor & Francis Journals, vol. 22(1), pages 30-34, January.
    26. Thomas E. Koker & Dimitrios Koutmos, 2020. "Cryptocurrency Trading Using Machine Learning," JRFM, MDPI, vol. 13(8), pages 1-7, August.
    27. Easley, David, et al, 1996. "Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-1436, September.
    28. Erdinc Akyildirim & Ahmet Goncu & Ahmet Sensoy, 2021. "Prediction of cryptocurrency returns using machine learning," Annals of Operations Research, Springer, vol. 297(1), pages 3-36, February.
    29. Cheng, Feiyang & Wang, Chunfeng & Chiao, Chaoshin & Yao, Shouyu & Fang, Zhenming, 2021. "Retail attention, retail trades, and stock price crash risk," Emerging Markets Review, Elsevier, vol. 49(C).
    30. Chang, Sanders S. & Chang, Lenisa V. & Wang, F. Albert, 2014. "A dynamic intraday measure of the probability of informed trading and firm-specific return variation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 80-94.
    31. Laura Alessandretti & Abeer ElBahrawy & Luca Maria Aiello & Andrea Baronchelli, 2018. "Anticipating Cryptocurrency Prices Using Machine Learning," Complexity, Hindawi, vol. 2018, pages 1-16, November.
    32. Yukun Liu & Aleh Tsyvinski, 2021. "Risks and Returns of Cryptocurrency," The Review of Financial Studies, Society for Financial Studies, vol. 34(6), pages 2689-2727.
    33. Brandvold, Morten & Molnár, Peter & Vagstad, Kristian & Andreas Valstad, Ole Christian, 2015. "Price discovery on Bitcoin exchanges," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 36(C), pages 18-35.
    34. Dyhrberg, Anne H. & Foley, Sean & Svec, Jiri, 2018. "How investible is Bitcoin? Analyzing the liquidity and transaction costs of Bitcoin markets," Economics Letters, Elsevier, vol. 171(C), pages 140-143.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Yujun & Li, Zhongfei & Nekhili, Ramzi & Sultan, Jahangir, 2023. "Forecasting cryptocurrency returns with machine learning," Research in International Business and Finance, Elsevier, vol. 64(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Yi-Shuai & Ma, Chao-Qun & Kong, Xiao-Lin & Baltas, Konstantinos & Zureigat, Qasim, 2022. "Past, present, and future of the application of machine learning in cryptocurrency research," Research in International Business and Finance, Elsevier, vol. 63(C).
    2. Dunbar, Kwamie & Owusu-Amoako, Johnson, 2023. "Predictability of crypto returns: The impact of trading behavior," Journal of Behavioral and Experimental Finance, Elsevier, vol. 39(C).
    3. Ahmed, Walid M.A., 2022. "Robust drivers of Bitcoin price movements: An extreme bounds analysis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    4. Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021. "Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
    5. Jlassi, Nabila Boukef & Jeribi, Ahmed & Lahiani, Amine & Mefteh-Wali, Salma, 2023. "Subsample analysis of stock market – cryptocurrency returns tail dependence: A copula approach for the tails," Finance Research Letters, Elsevier, vol. 58(PA).
    6. Ozdamar, Melisa & Sensoy, Ahmet & Akdeniz, Levent, 2022. "Retail vs institutional investor attention in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    7. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
    8. Bianchi, Daniele & Babiak, Mykola & Dickerson, Alexander, 2022. "Trading volume and liquidity provision in cryptocurrency markets," Journal of Banking & Finance, Elsevier, vol. 142(C).
    9. Li, Xiao & Wu, Ruoxi & Wang, Chen, 2024. "Impacts of bitcoin on monetary system: Is China's bitcoin ban necessary?," Research in International Business and Finance, Elsevier, vol. 69(C).
    10. Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & Lingbo Li & David Martinez-Regoband & Fan Wu, 2020. "Cryptocurrency Trading: A Comprehensive Survey," Papers 2003.11352, arXiv.org, revised Jan 2022.
    11. Abubakr Naeem, Muhammad & Iqbal, Najaf & Lucey, Brian M. & Karim, Sitara, 2022. "Good versus bad information transmission in the cryptocurrency market: Evidence from high-frequency data," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    12. Hung, Jui-Cheng & Liu, Hung-Chun & Yang, J. Jimmy, 2020. "Improving the realized GARCH’s volatility forecast for Bitcoin with jump-robust estimators," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    13. Borri, Nicola & Shakhnov, Kirill, 2023. "Cryptomarket discounts," Journal of International Money and Finance, Elsevier, vol. 139(C).
    14. Saggese, Pietro & Belmonte, Alessandro & Dimitri, Nicola & Facchini, Angelo & Böhme, Rainer, 2023. "Arbitrageurs in the Bitcoin ecosystem: Evidence from user-level trading patterns in the Mt. Gox exchange platform," Journal of Economic Behavior & Organization, Elsevier, vol. 213(C), pages 251-270.
    15. Guo, Li & Sang, Bo & Tu, Jun & Wang, Yu, 2024. "Cross-cryptocurrency return predictability," Journal of Economic Dynamics and Control, Elsevier, vol. 163(C).
    16. Foley, Sean & Krekel, William & Mollica, Vito & Svec, Jiri, 2023. "Not so fast: Identifying and remediating slow and imprecise cryptocurrency exchange data," Finance Research Letters, Elsevier, vol. 51(C).
    17. Moreno, David & Antoli, Marcos & Quintana, David, 2022. "Benefits of investing in cryptocurrencies when liquidity is a factor," Research in International Business and Finance, Elsevier, vol. 63(C).
    18. Yu‐Lun Chen & J. Jimmy Yang, 2024. "Time‐varying price discovery in regular and microbitcoin futures," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 44(1), pages 103-121, January.
    19. Brauneis, Alexander & Mestel, Roland & Theissen, Erik, 2021. "What drives the liquidity of cryptocurrencies? A long-term analysis," Finance Research Letters, Elsevier, vol. 39(C).
    20. Zhang, Wei & Li, Yi & Xiong, Xiong & Wang, Pengfei, 2021. "Downside risk and the cross-section of cryptocurrency returns," Journal of Banking & Finance, Elsevier, vol. 133(C).

    More about this item

    Keywords

    Cryptocurrency; Machine learning; Behavioral finance; Informed trading; Forecasting;
    All these keywords.

    JEL classification:

    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods
    • C81 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Microeconomic Data; Data Access
    • D82 - Microeconomics - - Information, Knowledge, and Uncertainty - - - Asymmetric and Private Information; Mechanism Design

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:62:y:2022:i:c:s027553192200071x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.