IDEAS home Printed from https://ideas.repec.org/a/eee/empfin/v29y2014icp80-94.html
   My bibliography  Save this article

A dynamic intraday measure of the probability of informed trading and firm-specific return variation

Author

Listed:
  • Chang, Sanders S.
  • Chang, Lenisa V.
  • Wang, F. Albert

Abstract

A central question in financial economics is how private information is incorporated into asset prices. A common method of measuring private information is the PIN measure, which uses statistical estimation of a sequential trade model of the trading process to estimate the probability of informed trading. A notable limiting feature of PIN is that one must aggregate very fine intraday data over very long macro horizons in order to estimate it. In this paper, our aim is to develop and implement a dynamic intraday measure of the probability of informed trading that circumvents this aggregation issue and allows for the measurement of information based trading activity at much higher frequencies. We then apply our dynamic intraday measure of the probability of informed trading to examine the relationship between private information and firm-specific return variation.

Suggested Citation

  • Chang, Sanders S. & Chang, Lenisa V. & Wang, F. Albert, 2014. "A dynamic intraday measure of the probability of informed trading and firm-specific return variation," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 80-94.
  • Handle: RePEc:eee:empfin:v:29:y:2014:i:c:p:80-94
    DOI: 10.1016/j.jempfin.2014.02.003
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S092753981400019X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jempfin.2014.02.003?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Y. Campbell & Sanford J. Grossman & Jiang Wang, 1993. "Trading Volume and Serial Correlation in Stock Returns," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 108(4), pages 905-939.
    2. Chakravarty, Sugato, 2001. "Stealth-trading: Which traders' trades move stock prices?," Journal of Financial Economics, Elsevier, vol. 61(2), pages 289-307, August.
    3. Duarte, Jefferson & Young, Lance, 2009. "Why is PIN priced?," Journal of Financial Economics, Elsevier, vol. 91(2), pages 119-138, February.
    4. David Easley & Soeren Hvidkjaer & Maureen O'Hara, 2002. "Is Information Risk a Determinant of Asset Returns?," Journal of Finance, American Finance Association, vol. 57(5), pages 2185-2221, October.
    5. Wood, Robert A & McInish, Thomas H & Ord, J Keith, 1985. "An Investigation of Transactions Data for NYSE Stocks," Journal of Finance, American Finance Association, vol. 40(3), pages 723-739, July.
    6. Mitchell A. Petersen, 2009. "Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches," The Review of Financial Studies, Society for Financial Studies, vol. 22(1), pages 435-480, January.
    7. repec:bla:jfinan:v:59:y:2004:i:1:p:65-105 is not listed on IDEAS
    8. Lei, Qin & Wu, Guojun, 2005. "Time-varying informed and uninformed trading activities," Journal of Financial Markets, Elsevier, vol. 8(2), pages 153-181, May.
    9. Qi Chen & Itay Goldstein & Wei Jiang, 2007. "Price Informativeness and Investment Sensitivity to Stock Price," The Review of Financial Studies, Society for Financial Studies, vol. 20(3), pages 619-650.
    10. Glosten, Lawrence R. & Milgrom, Paul R., 1985. "Bid, ask and transaction prices in a specialist market with heterogeneously informed traders," Journal of Financial Economics, Elsevier, vol. 14(1), pages 71-100, March.
    11. Benjamin M. Blau & Bonnie F. Van Ness & Robert A. Van Ness, 2009. "Intraday Stealth Trading: Which Trades Move Prices During Periods Of High Volume?," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 32(1), pages 1-21, March.
    12. Huang, Roger D & Stoll, Hans R, 1997. "The Components of the Bid-Ask Spread: A General Approach," The Review of Financial Studies, Society for Financial Studies, vol. 10(4), pages 995-1034.
    13. Easley, David & Kiefer, Nicholas M & O'Hara, Maureen, 1997. "One Day in the Life of a Very Common Stock," The Review of Financial Studies, Society for Financial Studies, vol. 10(3), pages 805-835.
    14. Lee, Charles M C & Ready, Mark J, 1991. "Inferring Trade Direction from Intraday Data," Journal of Finance, American Finance Association, vol. 46(2), pages 733-746, June.
    15. Anat R. Admati, Paul Pfleiderer, 1988. "A Theory of Intraday Patterns: Volume and Price Variability," The Review of Financial Studies, Society for Financial Studies, vol. 1(1), pages 3-40.
    16. Albert Wang, F., 1998. "Strategic trading, asymmetric information and heterogeneous prior beliefs," Journal of Financial Markets, Elsevier, vol. 1(3-4), pages 321-352, September.
    17. Chan, K C & Christie, William G & Schultz, Paul H, 1995. "Market Structure and the Intraday Pattern of Bid-Ask Spreads for NASDAQ Securities," The Journal of Business, University of Chicago Press, vol. 68(1), pages 35-60, January.
    18. Barclay, Michael J. & Warner, Jerold B., 1993. "Stealth trading and volatility : Which trades move prices?," Journal of Financial Economics, Elsevier, vol. 34(3), pages 281-305, December.
    19. Doron Avramov & Tarun Chordia & Amit Goyal, 2006. "The Impact of Trades on Daily Volatility," The Review of Financial Studies, Society for Financial Studies, vol. 19(4), pages 1241-1277.
    20. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    21. Artyom Durnev & Randall Morck & Bernard Yeung & Paul Zarowin, 2003. "Does Greater Firm‐Specific Return Variation Mean More or Less Informed Stock Pricing?," Journal of Accounting Research, Wiley Blackwell, vol. 41(5), pages 797-836, December.
    22. Easley, David & O'Hara, Maureen, 1987. "Price, trade size, and information in securities markets," Journal of Financial Economics, Elsevier, vol. 19(1), pages 69-90, September.
    23. Ken Nyholm, 2002. "Estimating the Probability of Informed Trading," Journal of Financial Research, Southern Finance Association;Southwestern Finance Association, vol. 25(4), pages 485-505, December.
    24. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    25. Gerety, Mason S & Mulherin, J Harold, 1992. "Trading Halts and Market Activity: An Analysis of Volume at the Open and the Close," Journal of Finance, American Finance Association, vol. 47(5), pages 1765-1784, December.
    26. Alexander, Gordon J. & Peterson, Mark A., 2007. "An analysis of trade-size clustering and its relation to stealth trading," Journal of Financial Economics, Elsevier, vol. 84(2), pages 435-471, May.
    27. Easley, David, et al, 1996. "Liquidity, Information, and Infrequently Traded Stocks," Journal of Finance, American Finance Association, vol. 51(4), pages 1405-1436, September.
    28. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    29. Kyle, Albert S, 1985. "Continuous Auctions and Insider Trading," Econometrica, Econometric Society, vol. 53(6), pages 1315-1335, November.
    30. Back, Kerry, 1992. "Insider Trading in Continuous Time," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 387-409.
    31. Harris, Lawrence, 1986. "A transaction data study of weekly and intradaily patterns in stock returns," Journal of Financial Economics, Elsevier, vol. 16(1), pages 99-117, May.
    32. Jain, Prem C. & Joh, Gun-Ho, 1988. "The Dependence between Hourly Prices and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 269-283, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kitamura, Yoshihiro, 2016. "The probability of informed trading measured with price impact, price reversal, and volatility," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 42(C), pages 77-90.
    2. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    3. Elaut, Gert & Frömmel, Michael & Lampaert, Kevin, 2018. "Intraday momentum in FX markets: Disentangling informed trading from liquidity provision," Journal of Financial Markets, Elsevier, vol. 37(C), pages 35-51.
    4. Chang, Sanders S. & Albert Wang, F., 2019. "Informed contrarian trades and stock returns," Journal of Financial Markets, Elsevier, vol. 42(C), pages 75-93.
    5. Keunbae Ahn, 2021. "Predictable Fluctuations in the Cross-Section and Time-Series of Asset Prices," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2021, January-A.
    6. Ping-Chen Tsai & Chi-Ming Tsai, 2021. "Estimating the proportion of informed and speculative traders in financial markets: evidence from exchange rate," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 443-470, July.
    7. Michael Frömmel & Eyup Kadioglu, 2023. "Impact of trading hours extensions on foreign exchange volatility: intraday evidence from the Moscow exchange," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-23, December.
    8. Petchey, James & Wee, Marvin & Yang, Joey, 2016. "Pinning down an effective measure for probability of informed trading," Pacific-Basin Finance Journal, Elsevier, vol. 40(PB), pages 456-475.
    9. Cheng, Feiyang & Chiao, Chaoshin & Wang, Chunfeng & Fang, Zhenming & Yao, Shouyu, 2021. "Does retail investor attention improve stock liquidity? A dynamic perspective," Economic Modelling, Elsevier, vol. 94(C), pages 170-183.
    10. Wang, Yaqi & Wang, Chunfeng & Sensoy, Ahmet & Yao, Shouyu & Cheng, Feiyang, 2022. "Can investors’ informed trading predict cryptocurrency returns? Evidence from machine learning," Research in International Business and Finance, Elsevier, vol. 62(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chang, Sanders S. & Wang, F. Albert, 2015. "Adverse selection and the presence of informed trading," Journal of Empirical Finance, Elsevier, vol. 33(C), pages 19-33.
    2. Chang, Sanders S. & Albert Wang, F., 2019. "Informed contrarian trades and stock returns," Journal of Financial Markets, Elsevier, vol. 42(C), pages 75-93.
    3. Moonsoo Kang & Kiseok Nam, 2015. "Informed trade and idiosyncratic return variation," Review of Quantitative Finance and Accounting, Springer, vol. 44(3), pages 551-572, April.
    4. Lof, Matthijs & Bommel, Jos van, 2018. "Asymmetric information and the distribution of trading volume," Research Discussion Papers 1, Bank of Finland.
    5. repec:zbw:bofrdp:001 is not listed on IDEAS
    6. Jinliang Li, 2016. "When noise trading fades, volatility rises," Review of Quantitative Finance and Accounting, Springer, vol. 47(3), pages 475-512, October.
    7. Patrick J. Kelly, 2014. "Information Efficiency and Firm-Specific Return Variation," Quarterly Journal of Finance (QJF), World Scientific Publishing Co. Pte. Ltd., vol. 4(04), pages 1-44.
    8. Hatheway, Frank & Kwan, Amy & Zheng, Hui, 2017. "An Empirical Analysis of Market Segmentation on U.S. Equity Markets," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 52(6), pages 2399-2427, December.
    9. Sun, Yuxin & Ibikunle, Gbenga, 2017. "Informed trading and the price impact of block trades: A high frequency trading analysis," International Review of Financial Analysis, Elsevier, vol. 54(C), pages 114-129.
    10. Webb, Robert I. & Ryu, Doojin & Ryu, Doowon & Han, Joongho, 2016. "The price impact of futures trades and their intraday seasonality," Emerging Markets Review, Elsevier, vol. 26(C), pages 80-98.
    11. repec:zbw:bofrdp:2018_001 is not listed on IDEAS
    12. Goodhart, Charles A. E. & O'Hara, Maureen, 1997. "High frequency data in financial markets: Issues and applications," Journal of Empirical Finance, Elsevier, vol. 4(2-3), pages 73-114, June.
    13. Lof, Matthijs & van Bommel, Jos, 2023. "Asymmetric information and the distribution of trading volume," Journal of Corporate Finance, Elsevier, vol. 82(C).
    14. Jagjeev Dosanjh, 2017. "Exchange Initiatives and Market Efficiency: Evidence from the Australian Securities Exchange," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2017, January-A.
    15. repec:uts:finphd:34 is not listed on IDEAS
    16. Michael J. Brennan & Sahn-Wook Huh & Avanidhar Subrahmanyam, 2016. "Asymmetric Effects of Informed Trading on the Cost of Equity Capital," Management Science, INFORMS, vol. 62(9), pages 2460-2480, September.
    17. repec:wyi:journl:002166 is not listed on IDEAS
    18. Travis L. Johnson & Eric C. So, 2018. "A Simple Multimarket Measure of Information Asymmetry," Management Science, INFORMS, vol. 64(3), pages 1055-1080, March.
    19. Ligon, James A. & Liu, Hao-Chen, 2013. "The relation of trade size and price contribution in a traditional foreign exchange brokered market," Pacific-Basin Finance Journal, Elsevier, vol. 21(1), pages 1024-1045.
    20. Raman Kumar & Marius Popescu, 2014. "The implied intra-day probability of informed trading," Review of Quantitative Finance and Accounting, Springer, vol. 42(2), pages 357-371, February.
    21. Chen, Haiqiang & Choi, Paul Moon Sub, 2012. "Does information vault Niagara Falls? Cross-listed trading in New York and Toronto," Journal of Empirical Finance, Elsevier, vol. 19(2), pages 175-199.
    22. Ping-Chen Tsai & Chi-Ming Tsai, 2021. "Estimating the proportion of informed and speculative traders in financial markets: evidence from exchange rate," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 16(3), pages 443-470, July.
    23. Vayanos, Dimitri & Wang, Jiang, 2013. "Market Liquidity—Theory and Empirical Evidence ," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, volume 2, chapter 0, pages 1289-1361, Elsevier.
    24. Berkman, Henk & Koch, Paul D., 2008. "Noise trading and the price formation process," Journal of Empirical Finance, Elsevier, vol. 15(2), pages 232-250, March.

    More about this item

    Keywords

    Informed trading; Private information; Price discovery; High-frequency; Firm-specific return variation; Price non-synchronicity;
    All these keywords.

    JEL classification:

    • G10 - Financial Economics - - General Financial Markets - - - General (includes Measurement and Data)
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading
    • G19 - Financial Economics - - General Financial Markets - - - Other

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:empfin:v:29:y:2014:i:c:p:80-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jempfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.