IDEAS home Printed from https://ideas.repec.org/a/eee/pacfin/v53y2019icp464-483.html
   My bibliography  Save this article

Idiosyncratic skewness, gambling preference, and cross-section of stock returns: Evidence from China

Author

Listed:
  • Yao, Shouyu
  • Wang, Chunfeng
  • Cui, Xin
  • Fang, Zhenming

Abstract

By using evidence of the pricing of idiosyncratic skewness (IS), which can represent gambling preferences, our paper finds that the Chinese stock market has a significant gambling pricing anomaly of “higher IS and lower subsequent returns”. Moreover, this paper discusses the reasons for this strong gambling atmosphere in the Chinese market. We find that (1) individual investor attention and trading behavior are important drivers of gambling behavior and that (2) in addition to the irrational behavior of individual investors, arbitrage restrictions in the market may further exacerbate this gambling atmosphere. Therefore, our study suggests that to increase the market's efficiency, market regulators should strengthen the appropriate guidance and management for individual investors and consider relaxing additional arbitrage limits.

Suggested Citation

  • Yao, Shouyu & Wang, Chunfeng & Cui, Xin & Fang, Zhenming, 2019. "Idiosyncratic skewness, gambling preference, and cross-section of stock returns: Evidence from China," Pacific-Basin Finance Journal, Elsevier, vol. 53(C), pages 464-483.
  • Handle: RePEc:eee:pacfin:v:53:y:2019:i:c:p:464-483
    DOI: 10.1016/j.pacfin.2019.01.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0927538X1830180X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.pacfin.2019.01.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Conrad, Jennifer & Kapadia, Nishad & Xing, Yuhang, 2014. "Death and jackpot: Why do individual investors hold overpriced stocks?," Journal of Financial Economics, Elsevier, vol. 113(3), pages 455-475.
    2. Owen A. Lamont & Richard H. Thaler, 2003. "Can the Market Add and Subtract? Mispricing in Tech Stock Carve-outs," Journal of Political Economy, University of Chicago Press, vol. 111(2), pages 227-268, April.
    3. Markus K. Brunnermeier & Jonathan A. Parker & Christian Gollier, 2007. "Optimal Beliefs, Asset Prices, and the Preference for Skewed Returns," American Economic Review, American Economic Association, vol. 97(2), pages 159-165, May.
    4. Jennifer N. Carpenter & Fangzhou Lu & Robert F. Whitelaw, 2015. "The Real Value of China's Stock Market," NBER Working Papers 20957, National Bureau of Economic Research, Inc.
    5. Miller, Edward M, 1977. "Risk, Uncertainty, and Divergence of Opinion," Journal of Finance, American Finance Association, vol. 32(4), pages 1151-1168, September.
    6. Seasholes, Mark S. & Wu, Guojun, 2007. "Predictable behavior, profits, and attention," Journal of Empirical Finance, Elsevier, vol. 14(5), pages 590-610, December.
    7. John Y. Campbell & Jens Hilscher & Jan Szilagyi, 2008. "In Search of Distress Risk," Journal of Finance, American Finance Association, vol. 63(6), pages 2899-2939, December.
    8. Shleifer, Andrei & Vishny, Robert W, 1997. "The Limits of Arbitrage," Journal of Finance, American Finance Association, vol. 52(1), pages 35-55, March.
    9. Kumar, Alok & Page, Jeremy K. & Spalt, Oliver G., 2016. "Gambling and Comovement," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 51(1), pages 85-111, February.
    10. Nartea, Gilbert V. & Kong, Dongmin & Wu, Ji, 2017. "Do extreme returns matter in emerging markets? Evidence from the Chinese stock market," Journal of Banking & Finance, Elsevier, vol. 76(C), pages 189-197.
    11. Amihud, Yakov, 2002. "Illiquidity and stock returns: cross-section and time-series effects," Journal of Financial Markets, Elsevier, vol. 5(1), pages 31-56, January.
    12. Andrew Ang & Robert J. Hodrick & Yuhang Xing & Xiaoyan Zhang, 2006. "The Cross‐Section of Volatility and Expected Returns," Journal of Finance, American Finance Association, vol. 61(1), pages 259-299, February.
    13. Jones, Charles M. & Lamont, Owen A., 2002. "Short-sale constraints and stock returns," Journal of Financial Economics, Elsevier, vol. 66(2-3), pages 207-239.
    14. Fama, Eugene F. & French, Kenneth R., 1993. "Common risk factors in the returns on stocks and bonds," Journal of Financial Economics, Elsevier, vol. 33(1), pages 3-56, February.
    15. Li, Xiao-Ming, 2017. "New evidence on economic policy uncertainty and equity premium," Pacific-Basin Finance Journal, Elsevier, vol. 46(PA), pages 41-56.
    16. Denis Gromb & Dimitri Vayanos, 2010. "Limits of Arbitrage: The State of the Theory," NBER Working Papers 15821, National Bureau of Economic Research, Inc.
    17. Bali, Turan G. & Cakici, Nusret & Whitelaw, Robert F., 2011. "Maxing out: Stocks as lotteries and the cross-section of expected returns," Journal of Financial Economics, Elsevier, vol. 99(2), pages 427-446, February.
    18. Cao, Jie & Han, Bing, 2016. "Idiosyncratic risk, costly arbitrage, and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 73(C), pages 1-15.
    19. Huang, Yuqin & Qiu, Huiyan & Wu, Zhiguo, 2016. "Local bias in investor attention: Evidence from China's Internet stock message boards," Journal of Empirical Finance, Elsevier, vol. 38(PA), pages 338-354.
    20. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    21. Mashruwala, Christina & Rajgopal, Shivaram & Shevlin, Terry, 2006. "Why is the accrual anomaly not arbitraged away? The role of idiosyncratic risk and transaction costs," Journal of Accounting and Economics, Elsevier, vol. 42(1-2), pages 3-33, October.
    22. Ng, Lilian & Wu, Fei, 2006. "Revealed stock preferences of individual investors: Evidence from Chinese equity markets," Pacific-Basin Finance Journal, Elsevier, vol. 14(2), pages 175-192, April.
    23. Nicholas Barberis & Ming Huang, 2008. "Stocks as Lotteries: The Implications of Probability Weighting for Security Prices," American Economic Review, American Economic Association, vol. 98(5), pages 2066-2100, December.
    24. Jegadeesh, Narasimhan, 1990. "Evidence of Predictable Behavior of Security Returns," Journal of Finance, American Finance Association, vol. 45(3), pages 881-898, July.
    25. Ma, Xianghai, 1996. "Capital controls, market segmentation and stock prices: Evidence from the Chinese stock market," Pacific-Basin Finance Journal, Elsevier, vol. 4(2-3), pages 219-239, July.
    26. T. Clifton Green & Byoung-Hyoun Hwang, 2012. "Initial Public Offerings as Lotteries: Skewness Preference and First-Day Returns," Management Science, INFORMS, vol. 58(2), pages 432-444, February.
    27. Alok Kumar, 2009. "Who Gambles in the Stock Market?," Journal of Finance, American Finance Association, vol. 64(4), pages 1889-1933, August.
    28. Fama, Eugene F & MacBeth, James D, 1973. "Risk, Return, and Equilibrium: Empirical Tests," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 607-636, May-June.
    29. Malagon, Juliana & Moreno, David & Rodríguez, Rosa, 2015. "The idiosyncratic volatility anomaly: Corporate investment or investor mispricing?," Journal of Banking & Finance, Elsevier, vol. 60(C), pages 224-238.
    30. Ohlson, Ja, 1980. "Financial Ratios And The Probabilistic Prediction Of Bankruptcy," Journal of Accounting Research, Wiley Blackwell, vol. 18(1), pages 109-131.
    31. Denis Gromb & Dimitri Vayanos, 2010. "Limits of Arbitrage," Annual Review of Financial Economics, Annual Reviews, vol. 2(1), pages 251-275, December.
    32. Brian Boyer & Todd Mitton & Keith Vorkink, 2010. "Expected Idiosyncratic Skewness," The Review of Financial Studies, Society for Financial Studies, vol. 23(1), pages 169-202, January.
    33. Maobin Wang & Chun Qiu & Dongmin Kong, 2011. "Corporate Social Responsibility, Investor Behaviors, and Stock Market Returns: Evidence from a Natural Experiment in China," Journal of Business Ethics, Springer, vol. 101(1), pages 127-141, June.
    34. Brad M. Barber & Terrance Odean, 2008. "All That Glitters: The Effect of Attention and News on the Buying Behavior of Individual and Institutional Investors," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 785-818, April.
    35. Boehme, Rodney D. & Danielsen, Bartley R. & Sorescu, Sorin M., 2006. "Short-Sale Constraints, Differences of Opinion, and Overvaluation," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 41(2), pages 455-487, June.
    36. Nagel, Stefan, 2005. "Short sales, institutional investors and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 78(2), pages 277-309, November.
    37. Wan, Xiaoyuan, 2018. "Is the idiosyncratic volatility anomaly driven by the MAX or MIN effect? Evidence from the Chinese stock market," International Review of Economics & Finance, Elsevier, vol. 53(C), pages 1-15.
    38. Jegadeesh, Narasimhan & Titman, Sheridan, 1993. "Returns to Buying Winners and Selling Losers: Implications for Stock Market Efficiency," Journal of Finance, American Finance Association, vol. 48(1), pages 65-91, March.
    39. J. Michael Harrison & David M. Kreps, 1978. "Speculative Investor Behavior in a Stock Market with Heterogeneous Expectations," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 92(2), pages 323-336.
    40. Jian Chen & Fuwei Jiang & Guoshi Tong, 2017. "Economic policy uncertainty in China and stock market expected returns," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 57(5), pages 1265-1286, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacobs, Heiko, 2015. "What explains the dynamics of 100 anomalies?," Journal of Banking & Finance, Elsevier, vol. 57(C), pages 65-85.
    2. Andreou, Panayiotis C. & Kagkadis, Anastasios & Philip, Dennis & Tuneshev, Ruslan, 2018. "Differences in options investors’ expectations and the cross-section of stock returns," Journal of Banking & Finance, Elsevier, vol. 94(C), pages 315-336.
    3. Lin, Mei-Chen & Lin, Yu-Ling, 2021. "Idiosyncratic skewness and cross-section of stock returns: Evidence from Taiwan," International Review of Financial Analysis, Elsevier, vol. 77(C).
    4. Yao, Shouyu & Wang, Chunfeng & Fang, Zhenming & Chiao, Chaoshin, 2021. "MAX is not the max under the interference of daily price limits: Evidence from China," International Review of Economics & Finance, Elsevier, vol. 73(C), pages 348-369.
    5. Zhu, Hongbing & Yang, Lihua & Xu, Changxin, 2023. "Tracking investor gambling intensity," International Review of Financial Analysis, Elsevier, vol. 86(C).
    6. Hai, Hoang Van & Park, Jong Won & Tsai, Ping-Chen & Eom, Cheoljun, 2020. "Lottery mindset, mispricing and idiosyncratic volatility puzzle: Evidence from the Chinese stock market," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    7. Turan G. Bali & Andriy Bodnaruk & Anna Scherbina & Yi Tang, 2018. "Unusual News Flow and the Cross Section of Stock Returns," Management Science, INFORMS, vol. 64(9), pages 4137-4155, September.
    8. Jang, Jeewon & Kang, Jangkoo, 2019. "Probability of price crashes, rational speculative bubbles, and the cross-section of stock returns," Journal of Financial Economics, Elsevier, vol. 132(1), pages 222-247.
    9. Kelley Bergsma & Jitendra Tayal, 2019. "Short Interest and Lottery Stocks," Financial Management, Financial Management Association International, vol. 48(1), pages 187-227, March.
    10. Atilgan, Yigit & Bali, Turan G. & Demirtas, K. Ozgur & Gunaydin, A. Doruk, 2020. "Left-tail momentum: Underreaction to bad news, costly arbitrage and equity returns," Journal of Financial Economics, Elsevier, vol. 135(3), pages 725-753.
    11. Sun, Kaisi & Wang, Hui & Zhu, Yifeng, 2023. "Salience theory in price and trading volume: Evidence from China," Journal of Empirical Finance, Elsevier, vol. 70(C), pages 38-61.
    12. Lin, Mei-Chen, 2023. "Analyst coverage and the idiosyncratic skewness effect in the Taiwan stock market," International Review of Financial Analysis, Elsevier, vol. 85(C).
    13. Byun, Suk-Joon & Kim, Da-Hea, 2016. "Gambling preference and individual equity option returns," Journal of Financial Economics, Elsevier, vol. 122(1), pages 155-174.
    14. Gao, Ya & Bradrania, Reza, 2024. "Property crime and lottery-related anomalies," Global Finance Journal, Elsevier, vol. 59(C).
    15. Jank, Stephan & Roling, Christoph & Smajlbegovic, Esad, 2021. "Flying under the radar: The effects of short-sale disclosure rules on investor behavior and stock prices," Journal of Financial Economics, Elsevier, vol. 139(1), pages 209-233.
    16. Zhao, Xiaojuan & Wang, Ye & Liu, Weiyi, 2024. "Someone like you: Lottery-like preference and the cross-section of expected returns in the cryptocurrency market," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 91(C).
    17. David Hirshleife, 2015. "Behavioral Finance," Annual Review of Financial Economics, Annual Reviews, vol. 7(1), pages 133-159, December.
    18. Hannes Mohrschladt & Judith C. Schneider, 2021. "Idiosyncratic volatility, option-based measures of informed trading, and investor attention," Review of Derivatives Research, Springer, vol. 24(3), pages 197-220, October.
    19. Tsai, Chia-Fen & Chang, Jung-Hsien & Tsai, Feng-Tse, 2021. "Lottery preferences and retail short selling," Pacific-Basin Finance Journal, Elsevier, vol. 68(C).
    20. Zhong, Angel, 2018. "Idiosyncratic volatility in the Australian equity market," Pacific-Basin Finance Journal, Elsevier, vol. 50(C), pages 105-125.

    More about this item

    Keywords

    Idiosyncratic skewness; Chinese stock market; Gambling behavior; Individual investors; Limits of arbitrage;
    All these keywords.

    JEL classification:

    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:pacfin:v:53:y:2019:i:c:p:464-483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/pacfin .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.