IDEAS home Printed from https://ideas.repec.org/a/eee/revfin/v18y2009i3p156-162.html
   My bibliography  Save this article

Survey evidence on forecast accuracy of U.S. term spreads

Author

Listed:
  • Baghestani, Hamid

Abstract

Successful portfolio management strategies partly require accurate forecasts of term spreads. Such forecasts may also be useful for policymaking since the yield curve may contain predictive information for economic growth. This study asks whether experts accurately predict term spreads. We show that the consensus forecasts from two separate panels, while superior to alternative benchmark forecasts, are free of systematic bias but unable to replicate the degree of variability in the actual change. Moreover, these forecasts are directionally accurate under symmetric loss, implying that they are of value to a market participant who assigns similar costs to incorrect upward and downward moves.

Suggested Citation

  • Baghestani, Hamid, 2009. "Survey evidence on forecast accuracy of U.S. term spreads," Review of Financial Economics, Elsevier, vol. 18(3), pages 156-162, August.
  • Handle: RePEc:eee:revfin:v:18:y:2009:i:3:p:156-162
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1058-3300(09)00003-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Massimo Guidolin & Allison K. Rodean, 2008. "No volatility, no forecasting power for the term spread," Monetary Trends, Federal Reserve Bank of St. Louis, issue Apr.
    2. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    3. Batchelor, Roy & Dua, Pami, 1991. "Blue Chip Rationality Tests," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 23(4), pages 692-705, November.
    4. James H. Stock & Mark W.Watson, 2003. "Forecasting Output and Inflation: The Role of Asset Prices," Journal of Economic Literature, American Economic Association, vol. 41(3), pages 788-829, September.
    5. Duarte, Agustin & Venetis, Ioannis A. & Paya, Ivan, 2005. "Predicting real growth and the probability of recession in the Euro area using the yield spread," International Journal of Forecasting, Elsevier, vol. 21(2), pages 261-277.
    6. Yvon Fauvel & Alain Paquet & Christian Zimmermann, 1999. "A Survey on Interest Rate Forecasting," Cahiers de recherche CREFE / CREFE Working Papers 87, CREFE, Université du Québec à Montréal.
    7. David H. Romer & Christina D. Romer, 2000. "Federal Reserve Information and the Behavior of Interest Rates," American Economic Review, American Economic Association, vol. 90(3), pages 429-457, June.
    8. Estrella, Arturo & Hardouvelis, Gikas A, 1991. "The Term Structure as a Predictor of Real Economic Activity," Journal of Finance, American Finance Association, vol. 46(2), pages 555-576, June.
    9. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    10. Simon, David P, 1989. "The Rationality of Federal Funds Rate Expectations: Evidence from a Survey: A Note," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 21(3), pages 388-393, August.
    11. Harvey, David & Leybourne, Stephen & Newbold, Paul, 1997. "Testing the equality of prediction mean squared errors," International Journal of Forecasting, Elsevier, vol. 13(2), pages 281-291, June.
    12. Enders, Walter & Granger, Clive W J, 1998. "Unit-Root Tests and Asymmetric Adjustment with an Example Using the Term Structure of Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 304-311, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alon Kalay & Suresh Nallareddy & Gil Sadka, 2018. "Uncertainty and Sectoral Shifts: The Interaction Between Firm-Level and Aggregate-Level Shocks, and Macroeconomic Activity," Management Science, INFORMS, vol. 64(1), pages 198-214, January.
    2. Hamid Baghestani & Jorg Bley, 2020. "Do directional predictions of US gasoline prices reveal asymmetries?," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 44(2), pages 348-360, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Baghestani, 2009. "Survey evidence on forecast accuracy of U.S. term spreads," Review of Financial Economics, John Wiley & Sons, vol. 18(3), pages 156-162, August.
    2. Hamid Baghestani, 2010. "Evaluating Blue Chip forecasts of the trade-weighted dollar exchange rate," Applied Financial Economics, Taylor & Francis Journals, vol. 20(24), pages 1879-1889.
    3. Fabio Moneta, 2005. "Does the Yield Spread Predict Recessions in the Euro Area?," International Finance, Wiley Blackwell, vol. 8(2), pages 263-301, August.
    4. Baghestani, Hamid, 2010. "How well do experts predict interbank loan rates and spreads?," Economics Letters, Elsevier, vol. 109(1), pages 4-6, October.
    5. repec:zbw:bofitp:2006_018 is not listed on IDEAS
    6. Arnaud Mehl, 2009. "The Yield Curve as a Predictor and Emerging Economies," Open Economies Review, Springer, vol. 20(5), pages 683-716, November.
    7. Arnaud Mehl, 2009. "The Yield Curve as a Predictor and Emerging Economies," Open Economies Review, Springer, vol. 20(5), pages 683-716, November.
    8. Karsten Müller, 2022. "German forecasters’ narratives: How informative are German business cycle forecast reports?," Empirical Economics, Springer, vol. 62(5), pages 2373-2415, May.
    9. Galvão, Ana Beatriz, 2013. "Changes in predictive ability with mixed frequency data," International Journal of Forecasting, Elsevier, vol. 29(3), pages 395-410.
    10. Mehmet Balcilar & Rangan Gupta & Stephen M. Miller, 2015. "The out-of-sample forecasting performance of nonlinear models of regional housing prices in the US," Applied Economics, Taylor & Francis Journals, vol. 47(22), pages 2259-2277, May.
    11. Ang, Andrew & Piazzesi, Monika & Wei, Min, 2006. "What does the yield curve tell us about GDP growth?," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 359-403.
    12. Matei Demetrescu & Christoph Hanck & Robinson Kruse‐Becher, 2022. "Robust inference under time‐varying volatility: A real‐time evaluation of professional forecasters," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 37(5), pages 1010-1030, August.
    13. Parigi, Giuseppe & Golinelli, Roberto, 2005. "Short-Run Italian GDP Forecasting and Real-Time Data," CEPR Discussion Papers 5302, C.E.P.R. Discussion Papers.
    14. Chris Florakis & Gianluigi Giorgioni & Alexandros Kostakis & Costas Milas, 2012. "The Impact of Stock Market Illiquidity on Real UK GDP Growth," Working Paper series 65_12, Rimini Centre for Economic Analysis.
    15. Ibarra-Ramírez Raúl, 2021. "The Yield Curve as a Predictor of Economic Activity in Mexico: The Role of the Term Premium," Working Papers 2021-07, Banco de México.
    16. Hännikäinen, Jari, 2017. "When does the yield curve contain predictive power? Evidence from a data-rich environment," International Journal of Forecasting, Elsevier, vol. 33(4), pages 1044-1064.
    17. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2016. "Common Drifting Volatility in Large Bayesian VARs," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 34(3), pages 375-390, July.
    18. George B. Tawadros, 2013. "The information content of the Reserve Bank of Australia's inflation forecasts," Applied Economics, Taylor & Francis Journals, vol. 45(5), pages 623-628, February.
    19. Paolo Zagaglia, 2024. "The Predictive Power of the Yield Spread Under the Veil of Time," Journal of Finance and Investment Analysis, SCIENPRESS Ltd, vol. 13(3), pages 1-1.
    20. Roy Batchelor, 2001. "How useful are the forecasts of intergovernmental agencies? The IMF and OECD versus the consensus," Applied Economics, Taylor & Francis Journals, vol. 33(2), pages 225-235.
    21. Faust, Jon & Wright, Jonathan H., 2013. "Forecasting Inflation," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 2-56, Elsevier.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:revfin:v:18:y:2009:i:3:p:156-162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620170 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.