IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v303y2022i2p877-890.html
   My bibliography  Save this article

Robust international portfolio optimization with worst‐case mean‐CVaR

Author

Listed:
  • Luan, Fei
  • Zhang, Weiguo
  • Liu, Yongjun

Abstract

We propose a robust international portfolio optimization model in a worst-case mean-CVaR framework. In our model, we assume that the distributions, the first- and second-order moments of returns of assets and exchange rates are ambiguous. To control the conservatism of our robust model, we incorporate a new support set constructed by intervals of deviations from the no-arbitrage condition in currency markets into the ambiguity set of distribution. Our model can be reformulated as an equivalent semi-definite programming problem, which is computationally tractable. We conduct empirical experiments by the weekly rolling window strategy during the total period, the 1997 Asian Financial Crisis period, and the recent stable period. Using various performance measures, we investigate the out-of-sample performance of our model with comparison to those of other four benchmark models. The experimental results demonstrate that our model has the best performance in terms of return and various risk adjusted return measures during all of the three periods. They suggest that investors can obtain significant benefits when employing the robust portfolio strategy and the new support set, and considering the ambiguity of the first- and second-order moments during both volatile and stable periods.

Suggested Citation

  • Luan, Fei & Zhang, Weiguo & Liu, Yongjun, 2022. "Robust international portfolio optimization with worst‐case mean‐CVaR," European Journal of Operational Research, Elsevier, vol. 303(2), pages 877-890.
  • Handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:877-890
    DOI: 10.1016/j.ejor.2022.03.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722002181
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.03.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lessard, Donald R, 1973. "International Portfolio Diversification: A Multivariate Analysis for a Group of Latin American Countries," Journal of Finance, American Finance Association, vol. 28(3), pages 619-633, June.
    2. repec:hal:spmain:info:hdl:2441/c8dmi8nm4pdjkuc9g70969520 is not listed on IDEAS
    3. Nicolas Coeurdacier & Stéphane Guibaud, 2011. "International portfolio diversification is better than you think," SciencePo Working papers hal-03602483, HAL.
    4. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2011. "Optimizing international portfolios with options and forwards," Journal of Banking & Finance, Elsevier, vol. 35(12), pages 3188-3201.
    5. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," The Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    6. Smimou, K., 2014. "International portfolio choice and political instability risk: A multi-objective approach," European Journal of Operational Research, Elsevier, vol. 234(2), pages 546-560.
    7. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.
    8. Coeurdacier, Nicolas & Guibaud, Stéphane, 2011. "International portfolio diversification is better than you think," Journal of International Money and Finance, Elsevier, vol. 30(2), pages 289-308, March.
    9. Levy, Haim & Sarnat, Marshall, 1970. "International Diversification of Investment Portfolios," American Economic Review, American Economic Association, vol. 60(4), pages 668-675, September.
    10. Karthik Natarajan & Dessislava Pachamanova & Melvyn Sim, 2008. "Incorporating Asymmetric Distributional Information in Robust Value-at-Risk Optimization," Management Science, INFORMS, vol. 54(3), pages 573-585, March.
    11. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    12. Steve Zymler & Daniel Kuhn & Berç Rustem, 2013. "Worst-Case Value at Risk of Nonlinear Portfolios," Management Science, INFORMS, vol. 59(1), pages 172-188, July.
    13. Raquel Fonseca & Wolfram Wiesemann & Berç Rustem, 2012. "Robust international portfolio management," Computational Management Science, Springer, vol. 9(1), pages 31-62, February.
    14. repec:hal:wpspec:info:hdl:2441/c8dmi8nm4pdjkuc9g70969520 is not listed on IDEAS
    15. Fletcher, Jonathan & Marshall, Andrew, 2005. "An empirical examination of the benefits of international diversification," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 15(5), pages 455-468, December.
    16. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    17. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    18. Glen, Jack & Jorion, Philippe, 1993. "Currency Hedging for International Portfolios," Journal of Finance, American Finance Association, vol. 48(5), pages 1865-1886, December.
    19. Black, Fischer, 1990. "Equilibrium Exchange Rate Hedging," Journal of Finance, American Finance Association, vol. 45(3), pages 899-907, July.
    20. Lotfi, Somayyeh & Zenios, Stavros A., 2018. "Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances," European Journal of Operational Research, Elsevier, vol. 269(2), pages 556-576.
    21. Adler, Michael & Dumas, Bernard, 1983. "International Portfolio Choice and Corporation Finance: A Synthesis," Journal of Finance, American Finance Association, vol. 38(3), pages 925-984, June.
    22. Liu, Jia & Chen, Zhiping, 2018. "Time consistent multi-period robust risk measures and portfolio selection models with regime-switching," European Journal of Operational Research, Elsevier, vol. 268(1), pages 373-385.
    23. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    24. Shushang Zhu & Masao Fukushima, 2009. "Worst-Case Conditional Value-at-Risk with Application to Robust Portfolio Management," Operations Research, INFORMS, vol. 57(5), pages 1155-1168, October.
    25. Beltratti, Andrea & Laurant, Andrea & Zenios, Stavros A., 2004. "Scenario modelling for selective hedging strategies," Journal of Economic Dynamics and Control, Elsevier, vol. 28(5), pages 955-974, February.
    26. Fonseca, Raquel J. & Rustem, Berç, 2012. "International portfolio management with affine policies," European Journal of Operational Research, Elsevier, vol. 223(1), pages 177-187.
    27. Jobson, J D & Korkie, Bob M, 1981. "Performance Hypothesis Testing with the Sharpe and Treynor Measures," Journal of Finance, American Finance Association, vol. 36(4), pages 889-908, September.
    28. Quaranta, Anna Grazia & Zaffaroni, Alberto, 2008. "Robust optimization of conditional value at risk and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2046-2056, October.
    29. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    30. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    31. Eun, Cheol S. & Resnick, Bruce G., 1997. "International equity investment with selective hedging strategies," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 7(1), pages 21-42, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    2. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    3. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    4. Ling, Aifan & Sun, Jie & Wang, Meihua, 2020. "Robust multi-period portfolio selection based on downside risk with asymmetrically distributed uncertainty set," European Journal of Operational Research, Elsevier, vol. 285(1), pages 81-95.
    5. Lotfi, Somayyeh & Zenios, Stavros A., 2018. "Robust VaR and CVaR optimization under joint ambiguity in distributions, means, and covariances," European Journal of Operational Research, Elsevier, vol. 269(2), pages 556-576.
    6. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
    7. Zhilin Kang & Zhongfei Li, 2018. "An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 169-195, April.
    8. Goh, Joel Weiqiang & Lim, Kian Guan & Sim, Melvyn & Zhang, Weina, 2012. "Portfolio value-at-risk optimization for asymmetrically distributed asset returns," European Journal of Operational Research, Elsevier, vol. 221(2), pages 397-406.
    9. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    10. Maria Scutellà & Raffaella Recchia, 2013. "Robust portfolio asset allocation and risk measures," Annals of Operations Research, Springer, vol. 204(1), pages 145-169, April.
    11. Topaloglou, Nikolas & Vladimirou, Hercules & Zenios, Stavros A., 2020. "Integrated dynamic models for hedging international portfolio risks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 48-65.
    12. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    13. A. Paç & Mustafa Pınar, 2014. "Robust portfolio choice with CVaR and VaR under distribution and mean return ambiguity," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(3), pages 875-891, October.
    14. Gabrel, Virginie & Murat, Cécile & Thiele, Aurélie, 2014. "Recent advances in robust optimization: An overview," European Journal of Operational Research, Elsevier, vol. 235(3), pages 471-483.
    15. Ling, Aifan & Sun, Jie & Yang, Xiaoguang, 2014. "Robust tracking error portfolio selection with worst-case downside risk measures," Journal of Economic Dynamics and Control, Elsevier, vol. 39(C), pages 178-207.
    16. Zhu, Shushang & Fan, Minjie & Li, Duan, 2014. "Portfolio management with robustness in both prediction and decision: A mixture model based learning approach," Journal of Economic Dynamics and Control, Elsevier, vol. 48(C), pages 1-25.
    17. McDowell, Shaun, 2018. "An empirical evaluation of estimation error reduction strategies applied to international diversification," Journal of Multinational Financial Management, Elsevier, vol. 44(C), pages 1-13.
    18. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    19. Fonseca, Raquel J. & Rustem, Berç, 2012. "International portfolio management with affine policies," European Journal of Operational Research, Elsevier, vol. 223(1), pages 177-187.
    20. Li Chen & Simai He & Shuzhong Zhang, 2011. "Tight Bounds for Some Risk Measures, with Applications to Robust Portfolio Selection," Operations Research, INFORMS, vol. 59(4), pages 847-865, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:303:y:2022:i:2:p:877-890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.