IDEAS home Printed from https://ideas.repec.org/a/taf/apmtfi/v11y2004i2p95-123.html
   My bibliography  Save this article

Multi-asset portfolio optimization with transaction cost

Author

Listed:
  • C. Atkinson
  • S. Mokkhavesa

Abstract

The inclusion of transaction costs in the optimal portfolio selection and consumption rule problem is accomplished via the use of perturbation analyses. The portfolio under consideration consists of more than one risky asset, which makes numerical methods impractical. The objective is to establish both the transaction and the no-transaction regions that characterize the optimal investment strategy. The optimal transaction boundaries for two and three risky assets portfolios are solved explicitly. A procedure for solving the N risky assets portfolio is described. The formulation used also reduces the restriction on the functional form of the utility preference.

Suggested Citation

  • C. Atkinson & S. Mokkhavesa, 2004. "Multi-asset portfolio optimization with transaction cost," Applied Mathematical Finance, Taylor & Francis Journals, vol. 11(2), pages 95-123.
  • Handle: RePEc:taf:apmtfi:v:11:y:2004:i:2:p:95-123
    DOI: 10.1080/13504860410001693496
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/13504860410001693496
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/13504860410001693496?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mark Broadie & Weiwei Shen, 2016. "High-Dimensional Portfolio Optimization With Transaction Costs," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(04), pages 1-49, June.
    2. Colin Atkinson & Emmeline Storey, 2010. "Building an Optimal Portfolio in Discrete Time in the Presence of Transaction Costs," Applied Mathematical Finance, Taylor & Francis Journals, vol. 17(4), pages 323-357.
    3. David Hobson & Yeqi Zhu, 2014. "Multi-asset consumption-investment problems with infinite transaction costs," Papers 1409.8037, arXiv.org.
    4. Yu, Jing-Rung & Chiou, Wan-Jiun Paul & Mu, Da-Ren, 2015. "A linearized value-at-risk model with transaction costs and short selling," European Journal of Operational Research, Elsevier, vol. 247(3), pages 872-878.
    5. Siu Lung Law & Chiu Fan Lee & Sam Howison & Jeff N. Dewynne, 2007. "Correlated multi-asset portfolio optimisation with transaction cost," Papers 0705.1949, arXiv.org, revised May 2009.
    6. Dylan Possamai & H. Mete Soner & Nizar Touzi, 2012. "Homogenization and asymptotics for small transaction costs: the multidimensional case," Papers 1212.6275, arXiv.org, revised Jan 2013.
    7. Dylan Possamai & Guillaume Royer, 2014. "General indifference pricing with small transaction costs," Papers 1401.3261, arXiv.org, revised Apr 2015.
    8. Nemat Safarov & Colin Atkinson, 2017. "Natural Gas-Fired Power Plants Valuation And Optimization Under Lévy Copulas And Regime Switching," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(01), pages 1-38, February.
    9. H. Mete Soner & Nizar Touzi, 2012. "Homogenization and asymptotics for small transaction costs," Papers 1202.6131, arXiv.org, revised Jun 2013.
    10. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Lee, Wen-Yi & Lin, Shun-Ji, 2020. "Portfolio models with return forecasting and transaction costs," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 118-130.
    11. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2016. "Hedging under an expected loss constraint with small transaction costs," Post-Print hal-00863562, HAL.
    12. Bruno Bouchard & Ludovic Moreau & Mete H. Soner, 2013. "Hedging under an expected loss constraint with small transaction costs," Papers 1309.4916, arXiv.org, revised Sep 2014.
    13. Yu, Jing-Rung & Paul Chiou, Wan-Jiun & Hsin, Yi-Ting & Sheu, Her-Jiun, 2022. "Omega portfolio models with floating return threshold," International Review of Economics & Finance, Elsevier, vol. 82(C), pages 743-758.
    14. Yu, Jing-Rung & Chiou, W. Paul & Hung, Cing-Hung & Dong, Wen-Kuei & Chang, Yi-Hsuan, 2022. "Dynamic rebalancing portfolio models with analyses of investor sentiment," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 1-13.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:apmtfi:v:11:y:2004:i:2:p:95-123. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RAMF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.