IDEAS home Printed from https://ideas.repec.org/a/eee/resene/v58y2019ics0928765518302513.html
   My bibliography  Save this article

The paradox of value, directed technical change, and the relative abundance of the chemical elements

Author

Listed:
  • Boyce, John R.

Abstract

Classical economists used the “paradox of value” that water is essential to life yet cheap, while diamonds were inessential to life yet dear, to explain how long-run supply is affected by relative abundance. This paper expands upon this theory by developing and estimating a directed technological change (DTC) model to analyze the relative abundance correlations of relative prices, world production, and R&D, as well as their growth rates, for the 87 chemical elements present in the Earth's crust. We show that these imply that the elasticity of substitution between resources and the elasticity of R&D with respect to industry revenues are such that more abundant resources have had larger markets, causing R&D to be biased towards more abundant resources. This explains why the paradox that water has been cheap while diamonds dear has held for centuries, and possibly even for millenia, even though prices have been falling relative to per capita income and per capita production has been rising for nearly all resources.

Suggested Citation

  • Boyce, John R., 2019. "The paradox of value, directed technical change, and the relative abundance of the chemical elements," Resource and Energy Economics, Elsevier, vol. 58(C).
  • Handle: RePEc:eee:resene:v:58:y:2019:i:c:s0928765518302513
    DOI: 10.1016/j.reseneeco.2019.101114
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0928765518302513
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.reseneeco.2019.101114?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin L. Weitzman, 1999. "Pricing the Limits to Growth from Minerals Depletion," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 691-706.
    2. Daron Acemoglu & Philippe Aghion & Leonardo Bursztyn & David Hemous, 2012. "The Environment and Directed Technical Change," American Economic Review, American Economic Association, vol. 102(1), pages 131-166, February.
    3. Nicholas Bloom & Charles I. Jones & John Van Reenen & Michael Webb, 2020. "Are Ideas Getting Harder to Find?," American Economic Review, American Economic Association, vol. 110(4), pages 1104-1144, April.
    4. Blaug,Mark, 1997. "Economic Theory in Retrospect," Cambridge Books, Cambridge University Press, number 9780521577014, October.
    5. Christian Broda & David E. Weinstein, 2006. "Globalization and the Gains From Variety," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 121(2), pages 541-585.
    6. Smulders, Sjak & de Nooij, Michiel, 2003. "The impact of energy conservation on technology and economic growth," Resource and Energy Economics, Elsevier, vol. 25(1), pages 59-79, February.
    7. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    8. Lee, Junsoo & List, John A. & Strazicich, Mark C., 2006. "Non-renewable resource prices: Deterministic or stochastic trends?," Journal of Environmental Economics and Management, Elsevier, vol. 51(3), pages 354-370, May.
    9. Joseph E. Stiglitz, 1974. "Growth with Exhaustible Natural Resources: The Competitive Economy," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 139-152.
    10. Lewis, Tracy R, 1982. "Sufficient Conditions for Extracting Least Cost Resource First," Econometrica, Econometric Society, vol. 50(4), pages 1081-1083, July.
    11. Daron Acemoglu & Ufuk Akcigit & Douglas Hanley & William Kerr, 2016. "Transition to Clean Technology," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 52-104.
    12. Slade, Margaret E., 1982. "Trends in natural-resource commodity prices: An analysis of the time domain," Journal of Environmental Economics and Management, Elsevier, vol. 9(2), pages 122-137, June.
    13. Ujjayant Chakravorty & Michel Moreaux & Mabel Tidball, 2008. "Ordering the Extraction of Polluting Nonrenewable Resources," American Economic Review, American Economic Association, vol. 98(3), pages 1128-1144, June.
    14. Daron Acemoglu, 2007. "Equilibrium Bias of Technology," Econometrica, Econometric Society, vol. 75(5), pages 1371-1409, September.
    15. Hart, Rob, 2016. "Non-renewable resources in the long run," Journal of Economic Dynamics and Control, Elsevier, vol. 71(C), pages 1-20.
    16. Pindyck, Robert S & Rotemberg, Julio J, 1990. "The Excess Co-movement of Commodity Prices," Economic Journal, Royal Economic Society, vol. 100(403), pages 1173-1189, December.
    17. Richard G. Newell & Adam B. Jaffe & Robert N. Stavins, 1999. "The Induced Innovation Hypothesis and Energy-Saving Technological Change," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(3), pages 941-975.
    18. Daron Acemoglu, 1998. "Why Do New Technologies Complement Skills? Directed Technical Change and Wage Inequality," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 113(4), pages 1055-1089.
    19. Bretschger, Lucas & Smulders, Sjak, 2012. "Sustainability and substitution of exhaustible natural resources," Journal of Economic Dynamics and Control, Elsevier, vol. 36(4), pages 536-549.
    20. Daron Acemoglu, 2002. "Directed Technical Change," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 69(4), pages 781-809.
    21. Swierzbinski, Joseph E & Mendelsohn, Robert, 1989. "Exploration and Exhaustible Resources: The Microfoundations of Aggregate Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 30(1), pages 175-186, February.
    22. Glenn-Marie Lange & Quentin Wodon & Kevin Carey, 2018. "The Changing Wealth of Nations 2018," World Bank Publications - Books, The World Bank Group, number 29001.
    23. Robert M. Solow & Frederic Y. Wan, 1976. "Extraction Costs in the Theory of Exhaustible Resources," Bell Journal of Economics, The RAND Corporation, vol. 7(2), pages 359-370, Autumn.
    24. David Popp, 2002. "Induced Innovation and Energy Prices," American Economic Review, American Economic Association, vol. 92(1), pages 160-180, March.
    25. Joseph Stiglitz, 1974. "Growth with Exhaustible Natural Resources: Efficient and Optimal Growth Paths," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 123-137.
    26. Partha Dasgupta & Geoffrey Heal, 1974. "The Optimal Depletion of Exhaustible Resources," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 41(5), pages 3-28.
    27. Schulze, William D., 1974. "The optimal use of non-renewable resources: The theory of extraction," Journal of Environmental Economics and Management, Elsevier, vol. 1(1), pages 53-73, May.
    28. Black, Geoffrey & LaFrance, Jeffrey T., 1998. "Is Hotelling's Rule Relevant to Domestic Oil Production?," Journal of Environmental Economics and Management, Elsevier, vol. 36(2), pages 149-169, September.
    29. Chakravorty, Ujjayant & Roumasset, James & Tse, Kinping, 1997. "Endogenous Substitution among Energy Resources and Global Warming," Journal of Political Economy, University of Chicago Press, vol. 105(6), pages 1201-1234, December.
    30. Goeller, H E & Weinberg, Alvin M, 1978. "The Age of Substitutability," American Economic Review, American Economic Association, vol. 68(6), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gregory Casey, 2024. "Energy Efficiency and Directed Technical Change: Implications for Climate Change Mitigation," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 192-228.
    2. John Boyce, "undated". "Biased Technological Change and the Relative Abundance of Natural Resources," Working Papers 2013-04, Department of Economics, University of Calgary.
    3. Óscar Afonso & Liliana Fonseca & Manuela Magalhães & Paulo B. Vasconcelos, 2021. "Directed technical change and environmental quality," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 20(1), pages 71-97, January.
    4. Philippe Aghion & Antoine Dechezleprêtre & David Hémous & Ralf Martin & John Van Reenen, 2016. "Carbon Taxes, Path Dependency, and Directed Technical Change: Evidence from the Auto Industry," Journal of Political Economy, University of Chicago Press, vol. 124(1), pages 1-51.
    5. Li, George Yunxiong & Ascani, Andrea & Iammarino, Simona, 2024. "The material basis of modern technologies. A case study on rare metals," Research Policy, Elsevier, vol. 53(1).
    6. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    7. André, Francisco J. & Smulders, Sjak, 2014. "Fueling growth when oil peaks: Directed technological change and the limits to efficiency," European Economic Review, Elsevier, vol. 69(C), pages 18-39.
    8. Zhangsheng Liu & Liuqingqing Yang & Liqin Fan, 2021. "Induced Effect of Environmental Regulation on Green Innovation: Evidence from the Increasing-Block Pricing Scheme," IJERPH, MDPI, vol. 18(5), pages 1-15, March.
    9. Martin Beraja & David Y Yang & Noam Yuchtman, 2023. "Data-intensive Innovation and the State: Evidence from AI Firms in China," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 90(4), pages 1701-1723.
    10. van den Bijgaart, Inge, 2017. "The unilateral implementation of a sustainable growth path with directed technical change," European Economic Review, Elsevier, vol. 91(C), pages 305-327.
    11. Cameron Hepburn & Jacquelyn Pless & David Popp, 2018. "Policy Brief—Encouraging Innovation that Protects Environmental Systems: Five Policy Proposals," Review of Environmental Economics and Policy, Association of Environmental and Resource Economists, vol. 12(1), pages 154-169.
    12. Lazkano, Itziar & Pham, Linh, 2016. "Do Fossil fuel Taxes Promote Innovation in Renewable Electricity Generation?," Discussion Paper Series in Economics 16/2016, Norwegian School of Economics, Department of Economics.
    13. Karanfil, Fatih & Yeddir-Tamsamani, Yasser, 2010. "Is technological change biased toward energy? A multi-sectoral analysis for the French economy," Energy Policy, Elsevier, vol. 38(4), pages 1842-1850, April.
    14. Julián D. Gómez, 2018. "¿Qué determina la adopción de tecnologías para la generación de energías renovables entre países?," Documentos CEDE 17132, Universidad de los Andes, Facultad de Economía, CEDE.
    15. Carraro, Carlo & De Cian, Enrica & Nicita, Lea & Massetti, Emanuele & Verdolini, Elena, 2010. "Environmental Policy and Technical Change: A Survey," International Review of Environmental and Resource Economics, now publishers, vol. 4(2), pages 163-219, October.
    16. Hou, Zheng & Roseta-Palma, Catarina & Ramalho, Joaquim José dos Santos, 2021. "Does directed technological change favor energy? Firm-level evidence from Portugal," Energy Economics, Elsevier, vol. 98(C).
    17. Kerner, Philip & Kalthaus, Martin & Wendler, Tobias, 2023. "Economic growth and the use of natural resources: assessing the moderating role of institutions," Energy Economics, Elsevier, vol. 126(C).
    18. Takeo Hori & Hiroaki Yamagami, 2018. "Intellectual property rights protection in the presence of exhaustible resources," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 759-784, October.
    19. Andreas Schaefer, 2017. "Enforcement of Intellectual Property, Pollution Abatement, and Directed Technical Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(3), pages 457-480, March.
    20. Daron Acemoglu, 2010. "When Does Labor Scarcity Encourage Innovation?," Journal of Political Economy, University of Chicago Press, vol. 118(6), pages 1037-1078.

    More about this item

    Keywords

    Paradox of value; Natural resource abundance; Directed technological change;
    All these keywords.

    JEL classification:

    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • Q32 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Nonrenewable Resources and Conservation - - - Exhaustible Resources and Economic Development
    • L71 - Industrial Organization - - Industry Studies: Primary Products and Construction - - - Mining, Extraction, and Refining: Hydrocarbon Fuels

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:resene:v:58:y:2019:i:c:s0928765518302513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/505569 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.